

 MPLAB® XC16 C Compiler User Guide

Notice to Development Tools Customers

Important: 
All documentation becomes dated, and Development Tools manuals are no exception. Our tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool
descriptions may differ from those in this document. Please refer to our website (www.microchip.com/) to
obtain the latest version of the PDF document.

Documents are identified with a DS number located on the bottom of each page. The DS format is
DS<DocumentNumber><Version>, where <DocumentNumber> is an 8-digit number and <Version> is an
uppercase letter.

For the most up-to-date information, find help for your tool at onlinedocs.microchip.com/.

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 1

https://www.microchip.com/
https://onlinedocs.microchip.com/

Table of Contents

Notice to Development Tools Customers... 1

1. Preface..7

1.1. GNU Free Documentation License Notice... 7
1.2. Conventions Used in This Guide..7
1.3. Recommended Reading...8

2. Compiler Overview..10

2.1. Device Description... 10
2.2. Compiler Description and Documentation..10

3. Compiler and Other Development Tools... 12

4. Common C Interface... 13

4.1. Background – The Desire for Portable Code... 13
4.2. Using the CCI...14
4.3. ANSI Standard Refinement..15
4.4. ANSI Standard Extensions...21
4.5. Compiler Features..32

5. How To's..34

5.1. Installing and Activating the Compiler.. 34
5.2. Invoking the Compiler...35
5.3. Writing Source Code.. 36
5.4. Getting My Application to Do What I Want... 43
5.5. Understanding the Compilation Process..45
5.6. Fixing Code That Does Not Work...49

6. XC16 Toolchain and MPLAB X IDE.. 52

6.1. MPLAB X IDE and Tools Installation.. 52
6.2. MPLAB X IDE Setup.. 52
6.3. MPLAB X IDE Projects...53
6.4. Operation Summary... 54
6.5. References...55
6.6. Project Setup..55
6.7. Project Example... 66

7. Compiler Command-Line Driver..69

7.1. Invoking the Compiler...69
7.2. The Compilation Sequence..71
7.3. Runtime Files... 74
7.4. Compiler Output... 75
7.5. Compiler Messages..76
7.6. Driver Option Descriptions... 76
7.7. MPLAB X IDE Toolchain Equivalents...98

8. Device-Related Features.. 99

8.1. Device Support...99

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 2

8.2. Device Header Files...99
8.3. Stack.. 100
8.4. Configuration Bit Access.. 101
8.5. Using SFRs.. 101
8.6. Bit-Reversed and Modulo Addressing..102
8.7. Using EDS..103
8.8. Stack Usage Guidance...104

9. Differences Between MPLAB XC16 and ANSI C..107

9.1. Divergence from the ANSI C Standard.. 107
9.2. Extensions to the ANSI C Standard... 107
9.3. Implementation-Defined Behavior..107

10. Supported Data Types and Variables..108

10.1. Identifiers..108
10.2. Integer Data Types...108
10.3. Floating-Point Data Types..109
10.4. Fixed-Point Data Types.. 110
10.5. Structures and Unions.. 111
10.6. Pointer Types..112
10.7. Literal Constant Types and Formats...114
10.8. Standard Type Qualifiers.. 116
10.9. Compiler-Specific Type Qualifiers.. 117
10.10. Variable Attributes... 119

11. Fixed-Point Arithmetic Support... 126

11.1. Enabling Fixed-Point Arithmetic Support..126
11.2. Data Types... 126
11.3. Rounding..127
11.4. Division By Zero... 127
11.5. External Definitions.. 127
11.6. Mixing C and Assembly Language Code... 128

12. Memory Allocation and Access... 129

12.1. Address Spaces... 129
12.2. Variables In Data Space Memory...129
12.3. Variables in Program Space...135
12.4. Parallel Master Port Access... 139
12.5. External Memory Access..140
12.6. Extended Data Space Access..144
12.7. Dataflash Memory Access..145
12.8. Dual Partition Memory Access... 145
12.9. Packing Data Stored in Flash...145
12.10. Allocation of Variables to Registers...146
12.11. Variables in EEPROM Data Space (Device Dependent).. 146
12.12. Dynamic Memory Allocation..148
12.13. Co-Resident Applications..148
12.14. Memory Models...148

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 3

13. Operators and Statements.. 152

13.1. Built-In Functions..152
13.2. Integral Promotion..152

14. Register Usage... 154

14.1. Register Variables.. 154
14.2. Changing Register Contents.. 154

15. Functions...156

15.1. Writing Functions..156
15.2. Function Size Limits... 162
15.3. Allocation of Function Code... 162
15.4. Changing the Default Function Allocation.. 162
15.5. Inline Functions.. 163
15.6. Memory Models..164
15.7. Function Call Conventions... 164

16. Interrupts... 167

16.1. Interrupt Operation... 167
16.2. Writing an Interrupt Service Routine.. 167
16.3. Specifying the Interrupt Vector... 169
16.4. Interrupt Service Routine Context Saving.. 170
16.5. Nesting Interrupts...171
16.6. Enabling/Disabling Interrupts... 171
16.7. ISR Considerations.. 172

17. Main, Runtime Startup and Reset .. 177

17.1. The main Function..177
17.2. Runtime Startup and Initialization...177

18. Mixing C and Assembly Code... 179

18.1. Mixing Assembly Language and C Variables and Functions... 179
18.2. Using Inline Assembly Language...180
18.3. Predefined Assembly Macros...185

19. Library Routines.. 186

20. Optimizations.. 187

20.1. Optimization Feature Summary..187
20.2. How to Enable Optimization...188
20.3. Using Optimizations... 189

21. Preprocessing... 193

21.1. C Language Comments... 193
21.2. Preprocessing Directives..193
21.3. Predefined Macro Names...194

22. Linking Programs.. 197

22.1. Default Memory Spaces...197
22.2. Replacing Library Symbols...198

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 4

22.3. Linker-Defined Symbols... 198
22.4. Default Linker Script...198

23. Implementation-Defined Behavior...200

23.1. Translation..200
23.2. Environment... 200
23.3. Identifiers..201
23.4. Characters..201
23.5. Integers.. 201
23.6. Floating Point... 202
23.7. Arrays and Pointers..203
23.8. Registers.. 203
23.9. Structures, Unions, Enumerations and Bit-Fields...203
23.10. Qualifiers...204
23.11. Declarators..204
23.12. Statements..204
23.13. Preprocessing Directives.. 204
23.14. Library Functions...205
23.15. Signals.. 206
23.16. Streams and Files... 206
23.17. tmpfile..207
23.18. errno..207
23.19. Memory... 207
23.20. abort..207
23.21. exit...207
23.22. getenv... 208
23.23. system...208
23.24. strerror...208

24. Embedded Compiler Compatibility Mode..209

24.1. Compiling in Compatibility Mode..209
24.2. Syntax Compatibility...209
24.3. Data Type...210
24.4. Operator... 210
24.5. Extended Keywords..211
24.6. Intrinsic Functions.. 212
24.7. Pragmas...212

25. Diagnostics..214

25.1. Errors..214
25.2. Warnings.. 232

26. GNU Free Documentation License... 252

27. Deprecated Features.. 257

27.1. Predefined Constants...257
27.2. Variables in Specified Registers...257
27.3. Changing Non-Auto Variable Allocation... 258
27.4. Configuration Settings Using Macros...259

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 5

28. Built-in Functions...260

28.1. Built-In Functions vs. Inline Assembly..260
28.2. Built-In Function Descriptions...260

29. Document Revision History...300

29.1. Revision M (January 2022).. 300
29.2. Revision L (February 2021)..300
29.3. Revision K (June 2020)..300
29.4. Revision J (December 2019)..300
29.5. Revision H (November 2018)...301
29.6. Revision G (February 2018)...301
29.7. Revision F (July 2016)..301
29.8. Revision E (December 2014)... 302
29.9. Revision D (August 2014).. 302
29.10. Revision C (September 2013)...302
29.11. Revision B (July 2012).. 303
29.12. Revision A (April 2012)... 303

The Microchip Website...304

Product Change Notification Service..304

Customer Support.. 304

Product Identification System...305

Microchip Devices Code Protection Feature.. 305

Legal Notice... 306

Trademarks.. 306

Quality Management System... 307

Worldwide Sales and Service...308

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 6

1. Preface
MPLAB® XC16 C Compiler documentation and support information is discussed in this section.

1.1 GNU Free Documentation License Notice
Copyright (C) 2021 Microchip Technology Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the chapter entitled "GNU Free Documentation License".

1.2 Conventions Used in This Guide
The following conventions may appear in this documentation:

Table 1-1. Documentation Conventions

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or dialog “Save project before build”

Underlined, italic text with right
angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format, where
N is the total number of digits, R is
the radix and n is a digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START
Filenames autoexec.bat
File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants 0xFF, ‘A’

Preface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 7

...........continued
Description Represents Examples

Italic Courier New A variable argument file.o, where file can be any valid
filename

Square brackets [] Optional arguments mcc18 [options] file [options]
Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [, var_name...]
Represents code supplied by user void main (void)

{ ...
}

Special Icon

DD Device Dependent.
This feature is not supported on all
devies. Devices supported will be
listed in the title or text.

xmemory attribute

1.3 Recommended Reading
This guide describes how to use the MPLAB XC16 C Compiler. Other useful documents are listed below. The
following Microchip documents are available and recommended as supplemental reference resources.

Release Notes (Readme Files)

For information on Microchip tools, read the associated Release Notes (HTML files) included with the software.

MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106)

A guide to using the 16-bit assembler, object linker, object archiver/librarian and various utilities.

16-Bit Language Tools Libraries (DS50001456)

A descriptive listing of libraries available for Microchip 16-bit devices. This includes standard (including math) libraries
and C compiler built-in functions. DSP and 16-bit peripheral libraries are described in Release Notes provided with
each peripheral library type.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions and features, including:

• Individual and family data sheets
• Family reference manuals
• Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems – Programming Language – C. American National Standards
Institute (ANSI), 11 West 42nd. Street, New York, New York, 10036.

This standard specifies the form and establishes the interpretation of programs expressed in the programming
language C. Its purpose is to promote portability, reliability, maintainability and efficient execution of C language
programs on a variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition, Prentice-Hall, Englewood Cliffs, N.J.
07632.

Preface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 8

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second Edition. Prentice Hall,
Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books, Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology Publishing, Eagle Rock, Virginia
24085.

Preface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 9

2. Compiler Overview
The MPLAB XC16 C compiler is defined and described in this section.

2.1 Device Description
The MPLAB XC16 C compiler fully supports all Microchip 16-bit devices:

• The dsPIC® family of digital signal controllers combines the high performance required in digital signal processor
(DSP) applications with standard microcontroller (MCU) features needed for embedded applications.

• The PIC24 family of MCUs are identical to the dsPIC DSCs with the exception that they do not have the digital
signal controller module or that subset of instructions. They are a subset, and are high-performance MCUs
intended for applications that do not require the power of the DSC capabilities.

2.2 Compiler Description and Documentation
The MPLAB XC16 C compiler is a full-featured, optimizing compiler that translates standard ANSI C programs into
16-bit device assembly language source. The compiler also supports many command-line options and language
extensions that allow full access to the 16-bit device hardware capabilities and affords fine control of the compiler
code generator.

The compiler is a port of the GNU Compiler Collection (GCC) compiler from the Free Software Foundation.

The compiler is available for several popular operating systems, including 32 and 64-bit Windows® OS, Linux® OS
and Mac® OS X®.

The compiler can be licensed as Free or PRO. The Free license has the minimum optimizations whereas the PRO
license has the maximum (for details see 20. Optimizations).The basic compiler operation, supported devices and
available memory are identical across all modes.

This key features of the compiler are discussed in the following sections.

2.2.1 ANSI C Standard
The compiler is a fully validated compiler that conforms to the ANSI C standard as defined by the ANSI specification
(ANSI x3.159-1989) and described in Kernighan and Ritchie’s The C Programming Language (second edition). The
ANSI standard includes extensions to the original C definition that are now standard features of the language.
These extensions enhance portability and offer increased capability. In addition, language extensions for dsPIC DSC
embedded-control applications are included.

2.2.2 Optimization
The compiler uses a set of sophisticated optimization passes that employ many advanced techniques for generating
efficient, compact code from C source. The optimization passes include high-level optimizations that are applicable to
any C code, as well as 16-bit device-specific optimizations that take advantage of the particular features of the device
architecture.

For more on optimizations, see section 20. Optimizations

2.2.3 ANSI Standard Library Support
The compiler is distributed with a complete ANSI C standard library. All library functions have been validated,
and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic
memory allocation, data conversion, timekeeping and math functions (trigonometric, exponential and hyperbolic).
The standard I/O functions for file handling are also included, and as distributed, they support full access to the host
file system using the command-line simulator. The fully functional source code for the low-level file I/O functions is
provided in the compiler distribution and may be used as a starting point for applications that require this capability.

Compiler Overview

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 10

2.2.4 Flexible Memory Models
The compiler supports both large and small code and data models. The small code model takes advantage of more
efficient forms of call and branch instructions, while the small data model supports the use of compact instructions for
accessing data in SFR space.

The compiler supports two models for accessing constant data. The “constants in data” model uses data memory,
which is initialized by the run-time library. The “constants in code” model uses program memory, which is accessed
through the Program Space Visibility (PSV) window.

2.2.5 Attributes and Qualifiers
The compiler keyword __attribute__ allows you to specify special attributes of variables, structure fields or
functions. This keyword is followed by an attribute specification inside double parentheses, as in:

int last_mode __attribute__ ((persistent));
In other compilers, qualifiers are used to create qualified types:

persistent int last_mode;
The MPLAB XC16 C Compiler does have some non-standard qualifiers described in 10.9. Compiler-Specific Type
Qualifiers

Generally speaking, qualifiers indicate how an object should be accessed, whereas attributes indicate where objects
are to be located. Attributes also have many other purposes.

2.2.6 Compiler Driver
The compiler includes a powerful command-line driver program. Using the driver program, application programs can
be compiled, assembled and linked in a single step.

2.2.7 Documentation
The compiler is supported under both the MPLAB® X IDE and MPLAB IDE v8.xx and above. In this document, only
the MPLAB X IDE is discussed.

Features that are unique to specific devices and therefore specific compilers, are noted with a “DD” icon next to the
section and text that identifies the specific devices to which the information applies (see the 1. Preface) .

Compiler Overview

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 11

3. Compiler and Other Development Tools
The compiler works with many other Microchip tools including:

• MPLAB XC16 Assembler and Linker - see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106)

• MPLAB X IDE
• MPLAB X Simulator
• Command-line MDB Simulator - see the Microchip Debugger (MDB) User’s Guide (DS52102) located in:

<MPLAB X IDE Installation Directory>docs
• All Microchip debug tools and programmers
• Demonstration boards and Starter kits that support 16-bit devices

Compiler and Other Development Tools

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 12

4. Common C Interface
The Common C Interface (CCI) is available with all MPLAB® XC C compilers and is designed to enhance code
portability between these compilers. For example, CCI-conforming code would make it easier to port from a PIC18
MCU using the MPLAB XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCI assumes that your source code already conforms to the ANSI Standard. If you intend to use the CCI, it is
your responsibility to write code that conforms. Legacy projects will need to be migrated to achieve conformance. A
compiler option must also be set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

4.1 Background – The Desire for Portable Code
All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different execution environment than that
for which it was written. Rarely can code be one hundred percent portable, but the more tolerant it is to change, the
less time and effort it takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices, but this is only part of the
situation. The same code could be compiled for the same target but with a different compiler. Differences between
those compilers might lead to the code failing at compile time or runtime, so this must be considered as well.

You can only write code for one target device and only use one brand of compiler, but if there is no regulation of the
compiler’s operation, simply updating your compiler version can change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the compiler vendors can base their
products on different technologies, implement different features and code syntax, or improve the way their product
works. Many a great compiler optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed and code is more portable.
The American National Standards Institute (ANSI) publishes standards for many disciplines, including programming
languages. The ANSI C Standard is a universally adopted standard for the C programming language.

4.1.1 The ANSI Standard
The ANSI C Standard has to reconcile two opposing goals: freedom for compiler vendors to target new devices and
improve code generation, with the known functional operation of source code for programmers. If both goals can be
met, source code can be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a conforming C program must
follow, but also the semantic rules by which that program will be interpreted. Thus, for a compiler to conform to the
standard, it must ensure that a conforming C program functions as described by the standard.

The standard describes implementation, the set of tools, and the runtime environment on which the code will run.
If any of these change, e.g., you build for, and run on, a different target device, or if you update the version of the
compiler you use to build, then you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the program. It has nothing to
do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting, some specifications appear
somewhat vague. For example, the standard states that an int type must be able to hold at least a 16-bit value, but
it does not go as far as saying what the size of an int actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are still ANSI C compliant.

If the standard is too strict, device architectures cannot allow the compiler to conform.(1) But, if it is too weak,
programmers would see wildly differing results within different compilers and architectures, and the standard would
lose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups that include the following
behaviors:

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 13

Implementation-defined
behavior

This is unspecified behavior in which each implementation documents how the
choice is made.

Unspecified behavior The standard provides two or more possibilities and imposes no further
requirements on which possibility is chosen in any particular instance.

Undefined behavior This is behavior for which the standard imposes no requirements.

Code that strictly conforms to the standard does not produce output that is dependent on any unspecified, undefined,
or implementation-defined behavior. The size of an int, which was used as an example earlier, falls into the category
of behavior that is defined by implementation. That is to say, the size of an int is defined by which compiler is being
used, how that compiler is being used, and the device that is being targeted.

All the MPLAB XC compilers conform to the ANSI X3.159-1989 Standard for programming languages (with the
exception of the MPLAB XC8 compiler’s inability to allow recursion, as mentioned in the footnote). This is commonly
called the C89 Standard. Some features from the later standard, C99, are also supported.

For freestanding implementations (or for what we typically call embedded applications), the standard allows non-
standard extensions to the language, but obviously does not enforce how they are specified or how they work. When
working so closely to the device hardware, a programmer needs a means of specifying device setup and interrupts,
as well as utilizing the often complex world of small-device memory architectures. This cannot be offered by the
standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and compiler vendors, programmers
need to consider the implementation-defined behavior of their tools and the probability that they may need to use
extensions to the C language that are non-standard. Both of these circumstances can have an impact on code
portability.

4.1.2 The Common C Interface
The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier for programmers to achieve
consistent outcomes on all Microchip devices when using any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the ANSI C
Standard

The CCI documents specific behavior for some code in which actions are
implementation-defined behavior under the ANSI C Standard. For example, the
result of right-shifting a signed integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device characteristics, such as
the size of an int, are not defined by the CCI.

Consistent syntax for
non-standard extensions

The CCI non-standard extensions are mostly implemented using keywords with a
uniform syntax. They replace keywords, macros and attributes that are the native
compiler implementation. The interpretation of the keyword can differ across each
compiler, and any arguments to the keywords can be device specific.

Coding guidelines The CCI can indicate advice on how code should be written so that it can be ported to
other devices or compilers. While you may choose not to follow the advice, it will not
conform to the CCI.

4.2 Using the CCI
The CCI allows enhanced portability by refining implementation-defined behavior and standardizing the syntax for
extensions to the language.

The CCI is something you choose to follow and put into effect, thus it is relevant for new projects, although you can
choose to modify existing projects so they conform.

For your project to conform to the CCI, you must complete the following tasks.

1 For example, the mid-range PIC® microcontrollers do not have a data stack. Because a compiler targeting this
device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI C Standard. This example
illustrates a situation in which the standard is too strict for mid-range devices and tools.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 14

• Enable the CCI
Select the MPLAB X IDE widget Use CCI Syntax in your project, or use the command-line option that is
equivalent.

• Include <xc.h> in every module
Some CCI features are only enabled if this header is seen by the compiler.

• Ensure ANSI compliance
Code that does not conform to the ANSI C Standard does not confirm to the CCI.

• Observe refinements to ANSI by the CCI
Some ANSI implementation-defined behavior is defined explicitly by the CCI.

• Use the CCI extensions to the language
Use the CCI extensions rather than the native language extensions.

The next sections detail specific items associated with the CCI. These items are segregated into those that refine the
standard, those that deal with the ANSI C Standard extensions, and other miscellaneous compiler options and usage.
Guidelines are indicated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed in this document, then it is not
part of the CCI. For example, GCC case ranges, label addresses, and 24-bit short long types are not part of the
CCI. Programs which use these features do not conform to the CCI. The compiler may issue a warning or error to
indicate a non-CCI feature has been used and the CCI is enabled.

4.3 ANSI Standard Refinement
The following topics describe how the CCI refines the implementation-defined behaviors outlined in the ANSI C
Standard.

4.3.1 Source File Encoding
Under the CCI, a source file must be written using characters from the 7-bit ASCII set. Lines can be terminated using
a line feed (\n) or carriage return (\r) that is immediately followed by a line feed. Escaped characters can be used in
character constants or string literals to represent extended characters that are not in the basic character set.

Example

The following shows a string constant being defined that uses escaped characters.

const char myName[] = "Bj\370rk\n";
Differences

All compilers have used this character set.

Migration to the CCI

No action required.

4.3.2 The Prototype for main
The prototype for the main() function is:

int main(void);
Example

The following shows an example of how main() might be defined:

int main(void)
{
 while(1)
 process();
}

Differences

The 8-bit compilers used a void return type for this function.

Migration to the CCI

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 15

Each program has one definition for the main() function. Confirm the return type for main() in all projects
previously compiled for 8-bit targets.

4.3.3 Header File Specification
Header file specifications that use directory separators do not conform to the CCI.

Example

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"
Differences

Header file specifications that use directory separators have been allowed in previous versions of all compilers.
Compatibility problems arose when Windows-style separators “\” were used and the code was compiled under other
host operating systems. Under the CCI, no directory separators should be used.

Migration to the CCI

Any #include directives that use directory separators in the header file specifications should be changed. Remove
all but the header file name in the directive. Add the directory path to the compiler’s include search path or MPLAB X
IDE equivalent. This will force the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>
should be changed to:

#include <lcd.h>
and the path to the inc directory added to the compiler’s header search path in your MPLAB X IDE project
properties, or on the command line as follows:

-Ilcd

4.3.4 Include Search Paths
When you include a header file under the CCI, the file should be discoverable in the paths searched by the compiler
that are detailed below.

Header files specified in angle bracket delimiters < > should be discoverable in the search paths that are specified
by -I options (or the equivalent MPLAB X IDE option), or in the standard compiler include directories. The -I
options are searched in the order in which they are specified.

Header files specified in quote characters " " should be discoverable in the current working directory or in the
same directories that are searched when the header files are specified in angle bracket delimiters (as above). In the
case of an MPLAB X project, the current working directory is the directory in which the C source file is located. If
unsuccessful, the search paths should point to the same directories searched when the header file is specified in
angle bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

Example

If including a header file, as in the following directive:

#include "myGlobals.h"
The header file should be locatable in the current working directory, or the paths specified by any -I options, or the
standard compiler directories. A header file being located elsewhere does not conform to the CCI.

Differences

The compiler operation under the CCI is not changed. This is purely a coding guideline.

Migration to the CCI

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 16

Remove any option that specifies header file search paths other than the -I option (or the equivalent MPLAB X IDE
option), and use the -I option in place of this. Ensure the header file can be found in the directories specified in this
section.

4.3.5 The Number of Significant Initial Characters in an Identifier
At least the first 255 characters in an identifier (internal and external) are significant. This includes the requirement of
the ANSI C Standard that states a lower number of significant characters are used to identify an object.

Example

The following example shows two poorly named variables, but names which are considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;
Differences

Former 8-bit compilers used 31 significant characters by default, but an option allowed this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant characters.

Migration to the CCI

No action required. You can take advantage of the less restrictive naming scheme.

4.3.6 Sizes of Types
The sizes of the basic C types, e.g., char, int and long, are not fully defined by the CCI. These types, by design,
reflect the size of registers and other architectural features in the target device. They allow the device to efficiently
access objects of this type. The ANSI C Standard does, however, indicate minimum requirements for these types, as
specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, e.g., uint8_t or int16_t.
These types are consistently defined across all XC compilers, even outside of the CCI.

Essentially, the C language offers a choice of two groups of types:

• Those that offer sizes and formats that are tailored to the device you are using.
• Those that have a fixed size, regardless of the target.

Example

The following example shows the definition of a variable, native, whose size will allow efficient access on the target
device; and a variable, fixed, whose size is clearly indicated and remains fixed, even though it may not allow
efficient access on every device.

int native;
int16_t fixed;
Differences

This is consistent with previous types implemented by the compiler.

Migration to the CCI

If you require a C type that has a fixed size, regardless of the target device, use one of the types defined by
<stdint.h>.

4.3.7 Plain char Types
The type of a plain char is unsigned char. It is generally recommended that all definitions for the char type
explicitly state the signedness of the object.

Example

The following example

char foobar;

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 17

defines an unsigned char object called foobar.

Differences

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used signed char as the default plain char type. The -funsigned-char option on
those compilers changed the default type to be unsigned char.

Migration to the CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers needs review. Any plain
char that was intended to be a signed quantity should be replaced with an explicit definition, for example.

signed char foobar;
You can use the -funsigned-char option on MPLAB XC16 and XC32 to change the type of plain char, but since
this option is not supported on MPLAB XC8, the code is not strictly conforming.

4.3.8 Signed Integer Representation
The value of a signed integer is determined by taking the two’s complement of the integer.

Example

The following shows a variable, test, that is assigned the value -28 decimal.

signed char test = 0xE4;
Differences

All compilers have represented signed integers in the way described in this section.

Migration to the CCI

No action required.

4.3.9 Integer Conversion
When converting an integer type to a signed integer of insufficient size, the original value is truncated from the
most-significant bit to accommodate the target size.

Example

The following shows an assignment of a value that is truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignment is -2 (i.e., the bit pattern 0xFE).

Differences

All compilers have performed integer conversion in an identical fashion to that described in this section.

Migration to the CCI

No action required.

4.3.10 Bitwise Operations on Signed Values
Bitwise operations on signed values act on the two’s complement representation, including the sign bit. See also
4.3.11. Right-shifting Signed Values

Example

The following example shows a negative quantity involved in a bitwise AND operation.

signed char output, input = -13;
output = input & 0x7E;
Under the CCI, the value of output after the assignment is 0x72.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 18

Differences

All compilers have performed bitwise operations in an identical fashion to that described in this section.

Migration to the CCI

No action required.

4.3.11 Right-shifting Signed Values
Right-shifting a signed value will involve sign extension. This will preserve the sign of the original value.

Example

The following shows an example of a negative quantity involved in a right-shift operation.

signed char output, input = -13;
output = input >> 3;
Under the CCI, the value of output after the assignment is -2 (i.e., the bit pattern 0xFE).

Differences

All compilers have performed right-shifting as described in this section.

Migration to the CCI

No action required.

4.3.12 Conversion of Union Member Accessed Using Member With Different Type
If a union defines several members of different types and you use one member identifier to try to access the contents
of another (whether any conversion is applied to the result) it is considered implementation-defined behavior in the
standard. In the CCI, no conversion is applied and the bytes of the union object are interpreted as an object of the
type of the member being accessed, without regard for alignment or other possible invalid conditions.

Example

The following example shows a union defining several members.

union {
 signed char code;
 unsigned int data;
 float offset;
} foobar;

Code that attempts to extract offset by reading data is not guaranteed to read the correct value.

float result;
result = foobbar.data;
Differences

All compilers have not converted union members accessed via other members.

Migration to the CCI

No action required.

4.3.13 Default Bit-field int Type
The type of a bit-field specified as a plain int is identical to that of one defined using unsigned int. This is quite
different from other objects where the types int, signed and signed int are synonymous. It is recommended
that the signedness of the bit-field be explicitly stated in all bit-field definitions.

Example

The following example shows a structure tag containing bit-fields that are unsigned integers with the size specified.

struct OUTPUTS {
 int direction :1;

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 19

 int parity :3;
 int value :4;
};

Differences

The 8-bit compilers have previously issued a warning if type int was used for bit-fields, but would implement the
bit-field with an unsigned int type.

The 16- and 32-bit compilers have implemented bit-fields defined using int as having a signed int type, unless
the option -funsigned-bitfields was specified.

Migration to the CCI

Any code that defines a bit-field with the plain int type should be reviewed. If the intention was for these to be
signed quantities, then the type of these should be changed to signed int. For example, in the following example:

struct WAYPT {
 int log :3;
 int direction :4;
};

the bit-field type should be changed to signed int, as in:

struct WAYPT {
 signed int log :3;
 signed int direction :4;
};

4.3.14 Bit-fields Straddling a Storage Unit Boundary
The standard indicates that implementations can determine whether bit-fields cross a storage unit boundary. In the
CCI, bit-fields do not straddle a storage unit boundary; a new storage unit is allocated to the structure, and padding
bits fill the gap.

Note that the size of a storage unit differs with each compiler, as this is based on the size of the base data type (e.g.,
int) from which the bit-field type is derived. On 8-bit compilers this unit is 8-bits in size; for 16-bit compilers, it is 16
bits; and for 32-bit compilers, it is 32 bits in size.

Example

The following example shows a structure containing bit-fields being defined.

struct {
 unsigned first : 6;
 unsigned second :6;
} order;

Under the CCI and using MPLAB XC8, the storage allocation unit is byte sized. The bit-field, second, is allocated a
new storage unit since there are only 2 bits remaining in the first storage unit in which first is allocated. The size of
this structure, order, is 2 bytes.

Differences

This allocation is identical with that used by all previous compilers.

Migration to the CCI

No action required.

4.3.15 The Allocation Order of Bit-fields
The memory ordering of bit-fields into their storage unit is not specified by the ANSI C Standard. In the CCI, the first
bit defined is the least significant bit of the storage unit in which it is allocated.

Example

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 20

The following example shows a structure containing bit-fields being defined.

struct {
 unsigned lo : 1;
 unsigned mid :6;
 unsigned hi : 1;
} foo;

The bit-field lo is assigned the least significant bit of the storage unit assigned to the structure foo. The bit-field mid
is assigned the next 6 least significant bits; and hi, the most significant bit of that same storage unit byte.

Differences

This is identical with the previous operation of all compilers.

Migration to the CCI

No action required.

4.3.16 The NULL Macro
The NULL macro is defined by <stddef.h>; however, its definition is implementation-defined behavior. Under the
CCI, the definition of NULL is the expression (0).

Example

The following example shows a pointer being assigned a null pointer constant via the NULL macro.

int * ip = NULL;
The value of NULL (0) is implicitly converted to the destination type.

Differences

The 32-bit compilers previously assigned NULL the expression ((void *)0).

Migration to the CCI

No action required.

4.3.17 Floating-point Sizes
Under the CCI, floating-point types must not be smaller than 32 bits in size.

Example

The following example shows the definition for outY, which is at least 32 bits in size.

float outY;
Differences

The 8-bit compilers have allowed the use of 24-bit float and double types.

Migration to the CCI

When using 8-bit compilers, the float and double type will automatically be made 32 bits in size once the CCI
mode is enabled. Review any source code that may have assumed a float or double type and may have been 24
bits in size.

No migration is required for other compilers.

4.4 ANSI Standard Extensions
The following topics describe how the CCI provides device-specific extensions to the standard.

4.4.1 Generic Header File
A single header file <xc.h> must be used to declare all compiler- and device-specific types and SFRs. You must
include this file into every module to conform with the CCI. Some CCI definitions depend on this header being seen.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 21

Example

The following shows this header file being included, thus allowing conformance with the CCI, as well as allowing
access to SFRs.

#include <xc.h>
Differences

Some 8-bit compilers used <htc.h> as the equivalent header. Previous versions of the 16- and 32-bit compilers
used a variety of headers to do the same job.

Migration to the CCI

Change:

#include <htc.h>
previously used in 8-bit compiler code, or family-specific header files, e.g., from:
#include <p32xxxx.h>
#include <p30fxxxx.h>
#include <p33Fxxxx.h>
#include <p24Fxxxx.h>
#include "p30f6014.h"

to:

#include <xc.h>

4.4.2 Absolute Addressing
Variables and functions can be placed at an absolute address by using the __at() construct. Stack-based (auto
and parameter) variables cannot use the __at() specifier.

Example

The following shows two variables and a function being made absolute.

int scanMode __at(0x200);
const char keys[] __at(124) = { ’r’, ’s’, ’u’, ’d’};

__at(0x1000) int modify(int x) {
 return x * 2 + 3;
}

Differences

The 8-bit compilers have used an @ symbol to specify an absolute address. The 16- and 32-bit compilers have used
the address attribute to specify an object’s address.

Migration to the CCI

Avoid making objects and functions absolute if possible.

In MPLAB XC8, change absolute object definitions, e.g., from:

int scanMode @ 0x200;
to:

int scanMode __at(0x200);
In MPLAB XC16 and XC32, change code, for example, from:

int scanMode __attribute__((address(0x200)));
to:

int scanMode __at(0x200);
Caveats

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 22

If the __at() and __section() specifiers are both applied to an object when using MPLAB XC8, the
__section() specifier is currently ignored.

The __at() specifier must be placed at the beginning of function prototypes for the 16- and 32-bit compilers. If
you prefer to use the specifier at the end of the prototype, use the specifier with a declaration and leave it off the
definition, for example:

int modify(int x) __at(0x1000);
int modify(int x)
{ ... }

4.4.3 Far Objects and Functions
The __far qualifier can be used to indicate that variables or functions are located in ‘far memory’. Exactly what
constitutes far memory is dependent on the target device, but it is typically memory that requires more complex code
to access. Expressions involving far-qualified objects usually generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on the semantics of this qualifier.

Some devices may not have such memory implemented, in which case, use of this qualifier is ignored. Stack-based
(auto and parameter) variables cannot use the __far specifier.

Example

The following shows a variable and function qualified using __far.

__far int serialNo;
__far int ext_getCond(int selector);
Differences

The 8-bit compilers have used the qualifier far to indicate this meaning. Functions could not be qualified as far.

The 16-bit compilers have used the far attribute with both variables and functions.

The 32-bit compilers have used the far attribute with functions only.

Migration to the CCI

For 8-bit compilers, change any occurrence of the far qualifier, e.g., from:

far char template[20];
to:

__far, i.e., __far char template[20];
In the 16- and 32-bit compilers, change any occurrence of the far attribute, for example, from:

void bar(void) __attribute__ ((far));
int tblIdx __attribute__ ((far));
to:

void __far bar(void);
int __far tblIdx;
Caveats

None.

4.4.4 Near Objects
The __near qualifier can be used to indicate that variables or functions are located in ‘near memory’. Exactly what
constitutes near memory is dependent on the target device, but it is typically memory that can be accessed with less
complex code. Expressions involving near-qualified objects generally are faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on the semantics of this qualifier.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 23

Some devices may not have such memory implemented, in which case, use of this qualifier is ignored. Stack-based
(auto and parameter) variables cannot use the __near specifier.

Example

The following shows a variable and function qualified using __near.

__near int serialNo;
__near int ext_getCond(int selector);
Differences

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions could not be qualified as near.

The 16-bit compilers have used the near attribute with both variables and functions.

The 32-bit compilers have used the near attribute for functions only.

Migration to the CCI

For 8-bit compilers, change any occurrence of the near qualifier to __near, e.g., from:

near char template[20];
to:

__near char template[20];
In 16- and 32-bit compilers, change any occurrence of the near attribute to __near, for example, from:

void bar(void) __attribute__ ((near));
int tblIdx __attribute__ ((near));
to:

void __near bar(void);
int __near tblIdx;
Caveats

None.

4.4.5 Persistent Objects
The __persistent qualifier can be used to indicate that variables should not be cleared by the runtime startup
code.

Use the native keywords discussed in the Differences section to look up information on the semantics of this qualifier.

Example

The following shows a variable qualified using __persistent.

__persistent int serialNo;
Differences

The 8-bit compilers have used the qualifier, persistent, to indicate this meaning.

The 16- and 32-bit compilers have used the persistent attribute with variables to indicate they were not to be
cleared.

Migration to the CCI

With 8-bit compilers, change any occurrence of the persistent qualifier to __persistent, e.g., from:

persistent char template[20];
to:

__persistent char template[20];

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 24

For the 16- and 32-bit compilers, change any occurrence of the persistent attribute to __persistent, for
example, from:

int tblIdx __attribute__ ((persistent));
to:

int __persistent tblIdx;
Caveats

None.

4.4.6 X and Y Data Objects
The __xdata and __ydata qualifiers can be used to indicate that variables are located in special memory regions.
Exactly what constitutes X and Y memory is dependent on the target device, but it is typically memory that can be
accessed independently on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the Differences section to look up information on the semantics of these
qualifiers.

Some devices may not have such memory implemented; in which case, use of these qualifiers is ignored.

Example

The following shows a variable qualified using __xdata, as well as another variable qualified with __ydata.

__xdata char data[16];
__ydata char coeffs[4];
Differences

The 16-bit compilers have used the xmemory and ymemory space attribute with variables.

Equivalent specifiers have never been defined for any other compiler.

Migration to the CCI

For 16-bit compilers, change any occurrence of the space attributes xmemory or ymemory to __xdata, or __ydata
respectively, for example, from:

char __attribute__((space(xmemory)))template[20];
to:

__xdata char template[20];
Caveats

None.

4.4.7 Banked Data Objects
The __bank(num) qualifier can be used to indicate that variables are located in a particular data memory bank.
The number, num, represents the bank number. Exactly what constitutes banked memory is dependent on the target
device, but it is typically a subdivision of data memory to allow for assembly instructions with a limited address width
field.

Use the native keywords discussed in the Differences section to look up information on the semantics of these
qualifiers.

Some devices may not have banked data memory implemented, in which case, use of this qualifier is ignored. The
number of data banks implemented will vary from one device to another.

Example

The following shows a variable qualified using __bank().

__bank(0) char start;
__bank(5) char stop;

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 25

Differences

The 8-bit compilers have used the four qualifiers bank0, bank1, bank2 and bank3 to indicate the same, albeit more
limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

Migration to the CCI

For 8-bit compilers, change any occurrence of the bankx qualifiers to __bank(), e.g.,

from:

bank2 int logEntry;
to:

__bank(2) int logEntry;
Caveats

This feature is not yet implemented in MPLAB XC8.

4.4.8 Alignment of Objects
The __align(alignment) specifier can be used to indicate that variables must be aligned on a memory address
that is a multiple of the alignment specified. The alignment term must be a power of 2. Positive values request that
the object’s start address be aligned.

Example

The following shows variables qualified using __align() to ensure they end on an address that is a multiple of 8,
and start on an address that is a multiple of 2, respectively.

__align(-8) int spacer;
__align(2) char coeffs[6];

Differences

An alignment feature has never been implemented on 8-bit compilers.

The 16- and 32-bit compilers used the aligned attribute with variables.

Migration to the CCI

For 16- and 32-bit compilers, change any occurrence of the aligned attribute to __aligned, for example, from:

char __attribute__((aligned(4)))mode;
to:

__align(4) char mode;

4.4.9 EEPROM Objects
The __eeprom qualifier can be used to indicate that variables should be positioned in EEPROM.

Use the native keywords discussed in the Differences section to look up information on the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices generates a warning. Stack-based
(auto and parameter) variables cannot use the __eeprom specifier.

Example

The following shows a variable qualified using __eeprom.

__eeprom int serialNos[4];
Differences

The 8-bit compilers have used the qualifier, eeprom, to indicate this meaning for some devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory space used for EEPROM.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 26

Migration to the CCI

For 8-bit compilers, change any occurrence of the eeprom qualifier to __eeprom, e.g., from:

eeprom char title[20];
to:

__eeprom char title[20];
For 16-bit compilers, change any occurrence of the eedata space attribute to __eeprom, for example, from:

int mainSw __attribute__ ((space(eedata)));
to:

int __eeprom mainSw;
Caveats

MPLAB XC8 does not implement the __eeprom qualifiers for any PIC18 devices; this qualifier works as expected for
other 8-bit devices.

4.4.10 Interrupt Functions
The __interrupt(type) specifier can be used to indicate that a function is to act as an interrupt service routine.
The type is a comma-separated list of keywords that indicate information about the interrupt function.

The current interrupt types are:

<empty> Implement the default interrupt function.

low_priority The interrupt function corresponds to the low priority interrupt source.
(MPLAB XC8 - PIC18 only)

high_priority The interrupt function corresponds to the high priority interrupt source.
(MPLAB XC8)

save(symbol-list) Save the listed symbols on entry, and restore on exit.
(MPLAB XC16)

irq(irqid) Specify the interrupt vector associated with this interrupt. (MPLAB XC16 and XC8)

altirq(altirqid) Specify the alternate interrupt vector associated with this interrupt.
(MPLAB XC16)

base(address) Specify vector table address.
(MPLAB XC8)

preprologue(asm) Specify assembly code to be executed before any compiler-generated interrupt code.
(MPLAB XC16)

shadow Allow the ISR to utilize the shadow registers for context switching.
(MPLAB XC16)

auto_psv The ISR will set the PSVPAG register and restore it on exit.
(MPLAB XC16)

no_auto_psv The ISR will not set the PSVPAG register.
(MPLAB XC16)

Use the native keywords discussed in the Differences section to look up information on the semantics of this
specifier.

Some devices may not implement interrupts. Use of this qualifier for such devices generates a warning. If the
argument to the __interrupt specifier does not make sense for the target device, a warning or error is issued by
the compiler.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 27

Example

The following shows a function qualified using __interrupt.

__interrupt(low_priority) void getData(void) {
 if (TMR0IE && TMR0IF) {
 TMR0IF=0;
 ++tick_count;
 }
{

Differences

8-bit compilers have used the interrupt and low_priority qualifiers to indicate this meaning for some devices.
Interrupt routines were, by default, high priority. The __interrupt() specifier may now be used outside of the CCI.

The 16-bit and 32-bit compilers have used the interrupt attribute to define interrupt functions.

Migration to the CCI

For 8-bit compilers, change any occurrence of the interrupt qualifier, e.g., from:

void interrupt myIsr(void)
void interrupt low_priority myLoIsr(void)

to the following, respectively:

void __interrupt(high_priority) myIsr(void)
void __interrupt(low_priority) myLoIsr(void)

For 16-bit compilers, change any occurrence of the __interrupt() attribute, e.g., from:

void _attribute_((interrupt(auto_psv,irq(52))))
_T1Interrupt(void);

to:

void __interrupt(auto_psv,irq(52))) _T1Interrupt(void);

For 32-bit compilers, the __interrupt() keyword takes two parameters, the vector number and the (optional) IPL
value. Change code that uses the interrupt attribute, similar to these examples:

void __attribute__((vector(0), interrupt(IPL7AUTO), nomips16))
myisr0_7A(void) {}
void __attribute__((vector(1), interrupt(IPL6SRS), nomips16))
myisr1_6SRS(void) {}
/* Determine IPL and context-saving mode at runtime */
void __attribute__((vector(2), interrupt(), nomips16))
myisr2_RUNTIME(void) {}

to:

void __interrupt(0,IPL7AUTO) myisr0_7A(void) {}
void __interrupt(1,IPL6SRS) myisr1_6SRS(void) {}
/* Determine IPL and context-saving mode at runtime */
void __interrupt(2) myisr2_RUNTIME(void) {}

Caveats

None.

4.4.11 Packing Objects
The __pack specifier can be used to indicate that structures should not use memory gaps to align structure
members, or that individual structure members should not be aligned.

Use the native keywords discussed in the Differences section to look up information on the semantics of this
specifier.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 28

Some compilers cannot pad structures with alignment gaps for some devices, and use of this specifier for such
devices is ignored.

Example

The following shows a structure qualified using __pack, as well as a structure where one member has been explicitly
packed.

__pack struct DATAPOINT {
 unsigned char type;
 int value;
} x-point;
struct LINETYPE {
 unsigned char type;
 __pack int start;
 long total;
} line;

Differences

The __pack specifier is a new CCI specifier that is available with MPLAB XC8. This specifier has no apparent effect
since the device memory is byte addressable for all data objects.

The 16- and 32-bit compilers have used the packed attribute to indicate that a structure member was not aligned
with a memory gap.

Migration to the CCI

No migration is required for MPLAB XC8.

For 16- and 32-bit compilers, change any occurrence of the packed attribute, for example, from:

struct DOT
{
 char a;
 int x[2] __attribute__ ((packed));
};

to:

struct DOT
{
 char a;
 __pack int x[2];
};

Alternatively, you can pack the entire structure, if required.

Caveats

None.

4.4.12 Indicating Antiquated Objects
The __deprecate specifier can be used to indicate that an object has limited longevity and should not be used
in new designs. It is commonly used by the compiler vendor to indicate that compiler extensions or features can
become obsolete, or that better features have been developed and should be used in preference.

Use the native keywords discussed in the Differences section to look up information on the semantics of this
specifier.

Example

The following shows a function that uses the __deprecate keyword.

void __deprecate getValue(int mode)
{
//...
}

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 29

Differences

No deprecate feature was implemented on 8-bit compilers.

The 16-bit and 32-bit compilers have used the deprecated attribute (note the different spelling) to indicate that
objects should be avoided, if possible.

Migration to the CCI

For 16- and 32-bit compilers, change any occurrence of the deprecated attribute to __deprecate, for example,
from:

int __attribute__(deprecated) intMask;
to:

int __deprecate intMask;

Caveats

None.

4.4.13 Assigning Objects to Sections
The __section() specifier can be used to indicate that an object should be located in the named section. This
is typically used when the object has special and unique linking requirements that cannot be addressed by existing
compiler features.

Use the native keywords discussed in the Differences section to look up information on the semantics of this
specifier.

Example

The following shows a variable which uses the __section keyword.

int __section(“comSec”) commonFlag;
Differences

The 8-bit compilers have previously used the #pragma psect directive to redirect objects to a new section, or
psect; however, the __section() specifier is the preferred method to perform this task, even if you are not using
the CCI.

The 16- and 32-bit compilers have used the section attribute to indicate a different destination section name. The
__section() specifier works in a similar way to the attribute.

Migration to the CCI

For MPLAB XC8, change any occurrence of the #pragma psect directive, such as:

#pragma psect text%%u=myText
int getMode(int target) {
//...
}

to the __section() specifier, as in:

int __section ("myText") getMode(int target) {
//...
}

For 16- and 32-bit compilers, change any occurrence of the section attribute, for example, from:

int __attribute__((section(“myVars”))) intMask;
to:

int __section(“myVars”) intMask;
Caveats

None.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 30

4.4.14 Specifying Configuration Bits
The #pragma config directive can be used to program the Configuration bits for a device. The pragma has the
form:

#pragma config setting = state|value
where setting is a configuration setting descriptor (for example, WDT), state is a descriptive value (for example,
ON) and value is a numerical value.

Use the native keywords discussed in the Differences section to look up information on the semantics of this
directive.

Example

The following shows Configuration bits being specified using this pragma.

#pragma config WDT=ON, WDTPS = 0x1A
Differences

The 8-bit compilers have used the __CONFIG() macro for some targets that did not already have support for the
#pragma config.

The 16-bit compilers have used a number of macros to specify the configuration settings.

The 32-bit compilers supported the use of #pragma config.

Migration to the CCI

For the 8-bit compilers, change any occurrence of the __CONFIG() macro, e.g., __CONFIG(WDTEN & XT &
DPROT) to the #pragma config directive, e.g.,

#pragma config WDTE=ON, FOSC=XT, CPD=ON
No migration is required if the #pragma config was already used.

For the 16-bit compilers, change any occurrence of the _FOSC() or _FBORPOR() macros attribute, e.g., from:

_FOSC(CSW_FSCM_ON & EC_PLL16);
to:

#pragma config FCKSMEM = CSW_ON_FSCM_ON, FPR = ECIO_PLL16
No migration is required for 32-bit code.

Caveats

None.

4.4.15 Manifest Macros
The CCI defines the general form for macros that manifest the compiler and target device characteristics. These
macros can be used to conditionally compile alternate source code based on the compiler or the target device.

The macros and macro families are details in the following table.

Table 4-1. Manifest Macros Defined by the CCI

Name Meaning if defined Example

__XC__ Compiled with an MPLAB XC compiler __XC__
__CCI__ Compiler is CCI compliant and CCI enforcement is enabled __CCI__
__XC##__ The specific XC compiler used (## can be 8, 16 or 32) __XC16__
__DEVICEFAMILY__ The family of the selected target device __dsPIC30F__
__DEVICENAME__ The selected target device name __18F452__

Example

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 31

The following example shows code that is conditionally compiled dependent on the device having EEPROM memory.

#ifdef __XC16__
void __interrupt(__auto_psv__) myIsr(void)
#else
void __interrupt(low_priority) myIsr(void
#endif

Differences

Some of these CCI macros are new (for example, __CCI__), and others have different names to previous symbols
with identical meaning (for example, __18F452 is now __18F452__).

Migration to the CCI

Any code that uses compiler-defined macros needs review. Old macros will continue to work as expected, but they
are not compliant with the CCI.

Caveats

None.

4.4.16 In-line Assembly
The asm() statement can be used to insert assembly code in-line with C code. The argument is a C string literal that
represents a single assembly instruction. Obviously, the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on the semantics of this
statement.

Example

The following shows a MOVLW instruction being inserted in-line.

asm("MOVLW _foobar");
Differences

The 8-bit compilers have used either the asm() or #asm...#endasm constructs to insert in-line assembly code.

This is the same syntax used by the 16- and 32-bit compilers.

Migration to the CCI

For 8-bit compilers, change any instance of #asm ... #endasm, so that each instruction in the #asm block is
placed in its own asm() statement, e.g., from:

#asm
MOVLW 20
MOVWF _i
CLRF Ii+1
#endasm

to:

asm("MOVLW20");
asm("MOVWF _i");
asm("CLRFIi+1");

No migration is required for the 16- or 32-bit compilers.

Caveats

None.

4.5 Compiler Features
The following item details the compiler options used to control the CCI.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 32

4.5.1 Enabling the CCI
It is assumed that you are using the MPLAB X IDE to build projects that use the CCI. The widget in the MPLAB X IDE
Project Properties is used to enable CCI conformance CCI Syntax in the Compiler category.

If you are not using this IDE, then the command-line option is -mcci for MPLAB XC16.

Differences

This option has never been implemented previously.

Migration to the CCI

Enable the option.

Caveats

None.

Common C Interface

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 33

5. How To's
This section contains help and references for situations that are frequently encountered when building projects with
Microchip 16-bit devices. Click the links at the beginning of each section to assist in finding the topic relevant to your
question. Some topics are indexed in multiple sections.

Start Here

• 5.1. Installing and Activating the Compiler
• 5.2. Invoking the Compiler
• 5.3. Writing Source Code
• 5.4. Getting My Application to Do What I Want
• 5.5. Understanding the Compilation Process
• 5.6. Fixing Code That Does Not Work

5.1 Installing and Activating the Compiler
This section details questions that might arise when installing or activating the compiler.

• 5.1.1. How Do I Install and Activate My Compiler?
• 5.1.2. How Can I Tell If the Compiler has Activated Successfully?
• 5.1.3. Can I Install More Than One Version of the Same Compiler?

5.1.1 How Do I Install and Activate My Compiler?
Installation of the license is performed by the XC compiler installer. Activation is available online through mySoftware.
For full instructions, refer to the following document. It is available for download from the Microchip Technology
website:
www.microchip.com/mplab/compilers

“Installing and Licensing MPLAB® XC C Compilers” (DS50002059).

5.1.2 How Can I Tell If the Compiler has Activated Successfully?
If you think the compiler has not installed correctly or is not activated, it is best to verify its operation outside of the
MPLAB X IDE to isolate any potential compiler or IDE problems.

The xclm application, which is shipped with the compiler, can be queried to determine the status of your compiler.
For example, from your DOS-prompt, type the following line, using the appropriate compiler path.

"C:\Program Files (x86)\Microchip\xc8\v2.00\bin\xclm" -status

This will show the licenses installed on the machine, allowing you to see if the compiler was activated
successfully. The status of your compiler license can also be checked under the MPLAB X IDE under
Tools>LicensesLicense>Status.

5.1.3 Can I Install More Than One Version of the Same Compiler?
The compilers and installation process have been designed to allow you to have more than one version of the same
compiler installed. In MPLAB X IDE, you can easily switch between compiler versions by changing options in the IDE.
For details, see the following section in this user’s guide:

5.2.3. How Can I Select Which Compiler Version to Build With?

Compilers should be installed into a directory that is named according to the compiler version. This is reflected in the
default directory specified by the installer. For example, the MPLAB XC16 compilers v1.00 and v1.10 would typically
be placed in separate directories, as shown below:

C:\Program Files\Microchip\xc16\v1.00\
C:\Program Files\Microchip\xc16\v1.10\

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 34

https://www.microchip.com/mplab/compilers

5.2 Invoking the Compiler
This section discusses how the compiler is run from the command line and from the IDE. Information about how to
use compiler options and the build process to achieve maximum results from the compiler are also included.

• How Do I Compile from Within MPLAB X IDE?
• How Do I Compile on the Command Line?
• How Can I Select Which Compiler Version to Build With?
• How Can I Change the Compiler Optimizations?
• How Do I Know Which Optimization Features I Get?
• How Do I Know Which Compiler Options Are Available and What They Do?
• How Do I Build Libraries?
• How Do I Know What the Build Options in MPLAB X IDE Do?
• What is Different About an MPLAB X IDE Debug Build?
• See also, Why No Disassembly in the MPLAB X IDE Disassembly Window?
• See also, Which Libraries Get Included by Default?

5.2.1 How Do I Compile from Within MPLAB X IDE?
In MPLAB X IDE you compile your code by building a project.

For more on using the compiler with MPLAB X IDE, see the following chapter and section in this user’s guide:

6. XC16 Toolchain and MPLAB X IDE

5.2.3. How Can I Select Which Compiler Version to Build With?

5.2.2 How Do I Compile on the Command Line?
To compile code on the command line, refer to the following chapter and section in this user’s guide:

7. Compiler Command-Line Driver

5.2.3. How Can I Select Which Compiler Version to Build With?

5.2.3 How Can I Select Which Compiler Version to Build With?
Both the compilation and installation processes were designed to allow you to have more than one compiler version
installed at the same time.

In MPLAB X IDE, select the compiler to use for building a project by opening the Project Properties window
(File>Project Properties) and selecting the Configuration category (Conf: [default]). A list of MPLAB XC16 compiler
versions is shown in the Compiler Toolchain, on the far right of the window. Select the MPLAB XC16 compiler you
require.

Once selected, the controls for that compiler are shown by selecting the XC16 global options, XC16 Compiler, and
XC16 Linker categories. These reveal a pane of options on the right; with each category having several panes which
can be selected from a pull-down menu that is near the top of the pane.

5.2.4 How Can I Change the Compiler Optimizations?
You can only select optimizations that your license entitles you to use. For more on compiler licenses, related
optimizations, and setting optimizations, see the following chapter and section in this user’s guide:

20. Optimizations

7.6.6. Options for Controlling Optimization

5.2.5 How Do I Know Which Optimization Features I Get?
When you select an optimization level, you get several optimization features. These features are tabulated in the
following section of this user’s guide:

20.1. Optimization Feature Summary

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 35

5.2.6 How Do I Know Which Compiler Options Are Available and What They Do?
A list of all compiler options can be found in the following section of this user’s guide:

7.6. Driver Option Descriptions

5.2.7 How Do I Build Libraries?
For information on how to create and build your own libraries, see the following sections of this user’s guide:

7.3.1. Library Files

5.2.8 How Do I Know What the Build Options in MPLAB X IDE Do?
Most of the widgets and controls in the MPLAB X IDE Project Properties window, XC16 options, map directly to a
corresponding command-line driver option or suboption. For a list of options and any corresponding command-line
options, refer to the following section of this user’s guide:

6.6. Project Setup

5.2.9 What is Different About an MPLAB X IDE Debug Build?
MPLAB X IDE needs to use extra memory for a debug build, as debugging requires additional resources. See
MPLAB X IDE documentation for details.

5.3 Writing Source Code
This section presents issues that pertain to the source code you write. It has been subdivided into sections listed
below.

• C Language Specifics
• Device-Specific Features
• Memory Allocation
• Variables
• Functions
• Interrupts
• Assembly Code

5.3.1 C Language Specifics
The MPLAB XC16 C compiler is an ANSI C compliant compiler and therefore follows standard C language
conventions. For more information, see the following section in this user’s guide:

2.2.1. ANSI C Standard

5.3.2 Device-Specific Features
This section discusses the code that needs to be written to set up or control a feature that is specific to Microchip
devices.

• 5.3.2.1. How Do I Port My Code To Different Device Architectures?
• 5.3.2.2. How Do I Set the Configuration Bits?
• 5.3.2.3. How Do I Access the User ID Locations?
• 5.3.2.4. How Do I Access Special Function Registers (SFRs)?
• 5.3.2.5. Are There Any SFRs Usage Considerations?
• 5.3.2.6. Which Device-Specific Symbols Does the Compiler Define, and Can I Use Them?
• See also, 5.3.3.4. How Do I Stop the Compiler From Using Certain Memory Locations?

5.3.2.1 How Do I Port My Code To Different Device Architectures?
To reduce the work required to port code between architectures, a Common C Interface (CCI) has been developed. If
you use these coding styles, your code will more easily migrate upward. For more on CCI, see the following section
in this user’s guide:

4. Common C Interface

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 36

5.3.2.2 How Do I Set the Configuration Bits?
These should be set in your code by using either a macro or pragma. Earlier versions of MPLAB X IDE allowed you
to set these bits in a dialog, but MPLAB X IDE requires that they be specified in your source code. See the following
section in this user’s guide:

8.4. Configuration Bit Access

5.3.2.3 How Do I Access the User ID Locations?
Currently, the only way to access a device (or family) ID location is to specify the fixed address of the device-ID
register(s). There is not a supplied macro or pragma at this time. Consult your device data sheet for the address of
the device-ID register(s).

5.3.2.4 How Do I Access Special Function Registers (SFRs)?
The compiler is distributed with header files that define variables. The variables are mapped over the top of memory-
mapped SFRs. Since these are C variables, they can be used like any other C variables. No new syntax is required
to access these registers.

The names of these variables should be the same as those indicated in the data sheet for the device you are using.

Bits within SFRs can also be accessed. Bit-fields are available in structures which map over the SFR as a whole. For
example, PORTCbits.RC1 means the RC1 bit of PORTC. For more on header files, see the following section in this
user’s guide:

8.2. Device Header Files

5.3.2.5 Are There Any SFRs Usage Considerations?
The dsPIC architecture defines various Special Function Registers that control hardware peripherals or other aspects
of the machine. In general these SFRs are accessed like other C variables.

Some SFRs represent memory mapped versions of CPU registers that the compiler depends upon. These registers
should not be written to by a C program as this could silently damage the operation of the application, especially
at higher optimization levels. Registers that should be avoided include: the memory mapped copies of the working
registers (WREG0, WREG1 and so on), parts of CORCON, ACCAx, and ACCBx.

Like luggage at an airport, many SFRs look alike. That is to say, there are subtle differences between some
peripheral registers from device to device. When compiling code for a generic device, avoid referring to SFR
registers.

5.3.2.6 Which Device-Specific Symbols Does the Compiler Define, and Can I Use Them?
The compiler defines some device-specific, and other, symbols or macros. They are discussed in the following
section in this user’s guide:

21.3. Predefined Macro Names

5.3.3 Memory Allocation
These questions relate to the way in which your source code affects memory allocation.

• 5.3.3.1. How Do I Position Variables or Functions at an Address I Nominate?
• 5.3.3.2. How Do I Place Variables in Program Memory?
• 5.3.3.3. How Do I Allocate Space for a Variable But Not Initialize/Load Any Value?
• 5.3.3.4. How Do I Stop the Compiler From Using Certain Memory Locations?

5.3.3.1 How Do I Position Variables or Functions at an Address I Nominate?
Nudging the tool chain to allocate variables or functions in specific areas of memory can make it harder for the linker
to do its job. Tools are provided to solve problems that may exist, but they should always be used carefully. For
example, instead of fixing an object at a specific address (using the address attribute or the __at construct), it may
be sufficient to group variables together using the section attribute.

5.3.3.2 How Do I Place Variables in Program Memory?
For information on how to place variables in program memory space, refer to the following section in this user’s
guide:

12.3. Variables in Program Space

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 37

5.3.3.3 How Do I Allocate Space for a Variable But Not Initialize/Load Any Value?
To allocate memory space for a variable without initializing or loading the variable in memory, you can use the
noload attribute. For more on variable attributes, see the following section in this user’s guide:

10.10. Variable Attributes

5.3.3.4 How Do I Stop the Compiler From Using Certain Memory Locations?
Concatenating an address attribute with the noload attribute can be used to block out sections of memory. For
more on variable attributes and options, see the following sections in this user’s guide:

10.10. Variable Attributes

7.6.1. Options Specific to 16-Bit Devices

Also, you can use the option -mreserve. See the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106) for details on linker scripts.

5.3.4 Variables
This section includes questions that relate to the definition and usage of variables and types within a program.

• 5.3.4.1. Why Are My Floating-Point Results Not Quite What I Am Expecting?
• 5.3.4.2. How Do I Retain the Value of a Variable Even After a Soft Reset?
• 5.3.4.3. How Do I Save C Variables When an ISR Is Invoked?
• 5.3.4.4. How Long Can I Make My Variable and Macro Names?
• 5.3.4.5. How Do I Access Values Stored in a PSV or EDS Page?
• 5.3.4.6. Why Would I Need to Place Data Into Its Own Section?
• 5.3.4.7. How Can I Load a Value Into Flash Memory?
• 5.3.4.8. How Can I Pack Data Into Flash Memory?
• 5.3.4.9. How Can I Define a Large Array?
• See also, 5.4.3. How Do I Share Data Between Interrupt and Main-line Code?
• See also, 5.3.3.1. How Do I Position Variables or Functions at an Address I Nominate?
• See also, 5.3.3.2. How Do I Place Variables in Program Memory?
• See also, 5.4.6. How Do I Place Variables in Off-Chip Memory?
• See also, 5.4.8. How Can I Rotate a Variable?
• See also, 5.5.14. How Do I Learn Where Variables and Functions Have Been Positioned?

5.3.4.1 Why Are My Floating-Point Results Not Quite What I Am Expecting?
First, ensure that you are using the floating-point data types that you intend. We recommend using the types long
double, explicitly in your program, when IEEE double precision (64 bit) format floating-point values are desired,
and float when IEEE single precision (32 bit) format values are desired. By default, the compiler uses IEEE single
precision format for the type double. Use the -fno-short-double switch to specify IEEE double precision (64 bit)
format for the type double.

Next, be aware of the limitations of the floating-point formats and the effects of rounding. Not all real numbers can
be represented exactly in the floating-point formats. For example, the fraction 1/10 cannot be represented exactly in
either the single or double precision formats.

If the result of a load or a computation is 1/10, the value stored in the floating-point format will be the closest
approximation representable in that format. In such cases, it is said that the “true” value has been “rounded” to
the nearest approximation, according to the rules of the IEEE arithmetic. This small discrepancy in a value that is
introduced early in a computation can accumulate over many operations and produce noticeable error. In general,
computations may start from numbers that are exactly representable (like 1 and 10), and yield results that are not
(like 1/10). This is not due to the compiler's choice of code generated, nor any specifics of the microprocessor
architecture, but rather an essential characteristic the IEEE floating-point formats and rules of arithmetic. Any
compiler/microprocessor platform faces the same issues. For more information, see the following section in this
user’s guide:

10.3. Floating-Point Data Types

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 38

5.3.4.2 How Do I Retain the Value of a Variable Even After a Soft Reset?
First, consult your device data sheet to see which Resets are available. Then save the values of your variables
after a software Reset, using the persistent attribute, which specifies that the variable should not be initialized or
cleared at startup. For more on this attribute, see the following section in this user’s guide:

10.10. Variable Attributes

5.3.4.3 How Do I Save C Variables When an ISR Is Invoked?
You can use the save parameter of the interrupt attribute to save variables and SFRs so that their values may be
restored on a return from interrupt. For more information, see the following section in this user’s guide:

16.4. Interrupt Service Routine Context Saving

5.3.4.4 How Long Can I Make My Variable and Macro Names?
For MPLAB XC16, no limit is imposed; but for CCI there is a limit. For details, see the following section in this user’s
guide:

4.3.5. The Number of Significant Initial Characters in an Identifier

5.3.4.5 How Do I Access Values Stored in a PSV or EDS Page?
16-bit devices have a method of accessing data memory from within Flash memory called Program Space Visibility
(PSV). You can access values in PSV memory by using the __psv__ qualifier. Another method to access data space
from program memory is called Extended Data Space (EDS). You can access values in EDS by using the __eds__
qualifier. For more on each of these qualifiers, see the following sections in this user’s guide:

10.9.1. __psv__ Type Qualifier

10.9.3. __eds__ Type Qualifier

5.3.4.6 Why Would I Need to Place Data Into Its Own Section?
The MPLAB XC16 Object Linker will place data into sections efficiently. However, you may want to manually place
groups of variables into sections because it is easier than manually placing each individual variable at a specific
address. If necessary, absolute starting addresses may be specified in user-defined sections within the device linker
script. To place data into its own section, you can use the section attribute, discussed in the following section in this
user’s guide:

10.10. Variable Attributes

To edit user-defined sections within the linker script, see the following document. It is available for download from the
Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker, and Utilities User's Guide” (DS50002106), Section 9.5 “Contents of a Linker
Script”.

5.3.4.7 How Can I Load a Value Into Flash Memory?
The compiler provides different ways of defining Flash variables.

• A variable can be explicitly placed into Flash using an appropriate space attribute.
• Variables are implicitly placed into Flash in the default const-in-code memory model if they have the C const

type qualifier.

These differences allow you to choose how much work you want to do to access variables, and how much you want
the compiler to do. The compiler has the least to do when you simply specify the attribute space(prog), and the
initial value; which leaves the access (usually via tblrd instructions) up to you, the programmer. The compiler has
the most to do when you combine the space(prog) attribute with an appropriate access qualifier, such as __eds__
or __prog__.

Also, there is often a single page of Flash space dedicated to const qualified objects. See -mconst-in-code in
the following sections of this user’s guide for more details:

10.10. Variable Attributes

12.3. Variables in Program Space

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 39

5.3.4.8 How Can I Pack Data Into Flash Memory?
To specify the upper byte of variables stored into space(prog) sections, you can use either the -mfillupper
option or the fillupper variable attribute. See the following sections of this user’s guide for more information:

7.6.1. Options Specific to 16-Bit Devices (-mfillupper)

10.10. Variable Attributes (fillupper)

5.3.4.9 How Can I Define a Large Array?
By default, arrays are allocated 32K of memory. If you need more, you can use the compiler option -mlarge-
arrays, remembering that there will be a memory cost. For more on the option, see the following section of this
user’s guide:

12.2.2. Non-Auto Variable Allocation and Access, “Non-Auto Variable Size Limits”.

5.3.5 Functions
This section includes questions that relate to functions.

• 5.3.5.1. How Do I Stop A Function From Being Removed?
• 5.3.5.2. Why Should I Inline My Function?
• 5.3.5.3. Why is My Function Not Inline?
• 5.3.5.4. Why Should I Place a Function Into its Own Section?
• 5.3.5.5. How Do I Prevent the Compiler From Saving or Restoring Any Registers?
• 5.3.5.6. How Can I Tell if a Function is Being Used?
• 5.3.5.7. How Can I Find Out Which Functions are Contained Inside the Compiler?
• 5.3.5.8. Where are Arguments That Are Passed to Functions Located in Memory?
• See also, 5.5.13. How Can I Tell How Big a Function Is?
• See also, 5.5.14. How Do I Learn Where Variables and Functions Have Been Positioned?
• See also, 5.3.6.1. How Do I Use Interrupts in C?

5.3.5.1 How Do I Stop A Function From Being Removed?
Apply the attribute keep to a function to prevent the linker from removing it with --gc-sections, even when the
function is unused. See the following section on keep of this user’s guide:

15.1.2. Function Attributes

5.3.5.2 Why Should I Inline My Function?
The reason why you might want to inline your function and how you would do so are discussed in the following
section of this user’s guide:

15.5. Inline Functions

5.3.5.3 Why is My Function Not Inline?
Unless you use the inline keyword to specifically inline a function, the compiler will make the decision about which
functions to inline. In general, small functions are inlined whereas larger ones are not. For details, see the following
section of this user’s guide:

15.5. Inline Functions

5.3.5.4 Why Should I Place a Function Into its Own Section?
The MPLAB XC16 Object Linker will place functions into sections efficiently. Since manual placement of functions
into program memory may reduce the linker's ability to do this with maximum efficiency, most applications should
not include manual placement of functions into program memory. However, bootloader applications are special. They
require application firmware to reside higher in memory than the bootloader, which requires manual placement of
functions to avoid conflicts with the bootloader application.

Also, applications that require code placement in secure sections need custom placement of program functions using
the boot or secure attributes. Address attributes can be applied to functions, as well.

To place a function into its own section with the section attribute, to place a function with the boot or secure
attributes, or to place a function with an address attribute, see the following section of this user’s guide:

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 40

15.1.2. Function Attributes

5.3.5.5 How Do I Prevent the Compiler From Saving or Restoring Any Registers?
If you do not want register values saved or restored after an interrupt or Reset, you can use the naked attribute.
This attribute should be used with care though, because you generally want to save these values. For details, see the
following section of this user’s guide:

15.1.2. Function Attributes

5.3.5.6 How Can I Tell if a Function is Being Used?
After the project has built, view the map file for a listing of used functions. Use the linker option --gc-sections to
ensure unused functions are removed. For details, see the following section of this user’s guide:

15.1.2. Function Attributes

For more on the linker, see the following document. It is available for download from the Microchip Technology
website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker, and Utilities User's Guide” (DS50002106).

5.3.5.7 How Can I Find Out Which Functions are Contained Inside the Compiler?
You can see compiler predefined symbols/macros and functions by running, and stopping the preprocessor, and then
examining the output. Options to do this are discussed in the following section of this user’s guide:

7.6.2. Options for Controlling the Kind of Output

5.3.5.8 Where are Arguments That Are Passed to Functions Located in Memory?
You will need to run compiler code to determine this. See the application binary interface when running the compiler.
Some built-ins may also be helpful. See the following location of this user’s guide:

28. Built-in Functions

5.3.6 Interrupts
Interrupt and interrupt service routine (ISR) questions are discussed in this section.

• 5.3.6.1. How Do I Use Interrupts in C?
• 5.3.6.2. How Do I Add a Trap Interrupt Vector to a Project?
• 5.3.6.3. Can/Should My Application be able to Return from a Trap?
• 5.3.6.4. How Do I Share Data Between Two Interrupt Routines?
• 5.3.6.5. What is the Default Interrupt, Where is it Defined, and How Do I Use It?
• See also, 5.5.8. How Can I Make My Interrupt Routine Faster?
• See also, 5.4.3. How Do I Share Data Between Interrupt and Main-line Code?
• See also, 5.3.4.3. How Do I Save C Variables When an ISR Is Invoked?

5.3.6.1 How Do I Use Interrupts in C?
First, be aware of the interrupt hardware that is available on your target device. 16-bit devices implement several
separate interrupt vector locations and use a priority scheme. See your device data sheet for details. Then, review
the following chapter of this user’s guide for more information:

16. Interrupts

5.3.6.2 How Do I Add a Trap Interrupt Vector to a Project?
The compiler treats hard traps the same as normal interrupt vectors, as they have names just like the handlers for
peripherals. A useful place to find all the interrupt functions supported by a particular device is in the docs folder of
your install:
vector_index.html.

The general format is:

void __attribute__((interrupt)) ISR_fn_name(void) {
}

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 41

5.3.6.3 Can/Should My Application be able to Return from a Trap?
This question is very specific to the application/trap. The general answer is that the application should probably safely
restart when such an event occurs.

5.3.6.4 How Do I Share Data Between Two Interrupt Routines?
By their very nature, ISRs do not send results or receive parameters. The only way to share data is by using common
data sharing procedures. Examples of these would be by volatile global variables or via specialized accessor
functions, which can carefully control access to data, and make your application more robust.

Whenever data is shared across different threads of control, which is really what a interrupt routine is, it is important
that the shared data accesses are protected from further interruption as not all accesses are atomic.

5.3.6.5 What is the Default Interrupt, Where is it Defined, and How Do I Use It?
The “default interrupt” fills in the vector table when no other named vector exists. If it is not defined, the compiler will
create one that will halt in a debugging environment or Reset in a normal execution (non-debug) environment.

You can define your own handler by simply defining an ISR named: _DefaultInterrupt.

5.3.7 Assembly Code
This section examines questions that arise when writing assembly code as part of a C project.

• 5.3.7.1. How Should I Combine Assembly and C Code?
• 5.3.7.2. What Do I Need Other Than Instructions in an Assembly Source File?
• 5.3.7.3. How Do I Access C Objects from Assembly Code?
• 5.3.7.4. How Can I Access SFRs From Within Assembly Code?
• 5.3.7.5. When Should I Combine Assembly and C Code?
• 5.3.7.6. What is the Difference Between .s and .S Files?
• 5.3.7.7. How Do I Make a Function Wrapper For an Assembly Module?
• 5.3.7.8. When Should Inline Assembly Be Used Instead of Assembly Modules?

5.3.7.1 How Should I Combine Assembly and C Code?
Assembly code can be written as separate functions that are called from C code or as inline from within the C code.
For details, see the following chapter of this user’s guide:

18. Mixing C and Assembly Code

5.3.7.2 What Do I Need Other Than Instructions in an Assembly Source File?
Assembly code typically needs assembler directives, as well as the instructions themselves. The operation of these
directives is described in the following document. It is available for download from the Microchip Technology website,
www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106).

There are two directives that are commonly used in assembly code. The first one is the .section directive. All
assembly code must be placed in a section using this directive, so that it can be manipulated as a whole by the
linker, and placed into memory. The second one is the .global directive. This directive is used to make symbols
accessible across multiple source files.

5.3.7.3 How Do I Access C Objects from Assembly Code?
Most C objects are accessible from assembly code. There is a mapping between the symbols used in the C source
and those used in the assembly code generated from this source. Your assembly should access the assembly-
equivalent symbols which are detailed in the following section of this user's guide:

18.1. Mixing Assembly Language and C Variables and Functions

5.3.7.4 How Can I Access SFRs From Within Assembly Code?
The easiest way to gain access to SFRs in assembly code is to use the device-generic include file (xc.h) that
equates symbols to the corresponding SFR address.

There is no guarantee that you will be able to access symbols generated by the compilation of C code, even if it is
code that accesses the SFR that you require. See the following section of this user’s guide:

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 42

15.7. Function Call Conventions

5.3.7.5 When Should I Combine Assembly and C Code?
This is a very application-dependent question. There are some device-specific operations that cannot be done in
normal C code. Typically, the language tool will provide a built-in function to provide this feature.

If you decide to combine assembly and C code, ensure that the code complies with the run-time model, i.e., that
arguments are transmitted in the correct registers; and that registers are properly used and not overwritten.

5.3.7.6 What is the Difference Between .s and .S Files?
Both of these files should contain assembly language. .S files which are preprocessed by the C compiler. This
means that they might include C preprocessing statements (#define, #ifdef, and etc.), but they should not contain
C statements. For information on these assembly files, see the following section of this user’s guide:

7.4.1. Output Files

5.3.7.7 How Do I Make a Function Wrapper For an Assembly Module?
The C compiler expects all C visible names to start with a leading underscore. In order to export a function to C code
from assembly code, it must be globally visible. Of course, there should also be an external prototype in C so that the
compiler can properly see it.

 foo.s:

 .text
 .global _foo
 _foo: retlw #0,w0

 main.c:
 extern int foo(void);

For details on using C code with an assembly module, see the following section of this user’s guide:

18.1. Mixing Assembly Language and C Variables and Functions

5.3.7.8 When Should Inline Assembly Be Used Instead of Assembly Modules?
If the programmer does decide to combine assembly code and C code; ensure that the following occurs:

• Code complies with the run-time model
• Registers are properly used and not overwritten
• Code uses the GNU extended inline assembly code

Long sequences are often hard to debug, so ensure that you correctly follow the guidelines.

5.4 Getting My Application to Do What I Want
This section provides programming techniques, applications and examples. It also examines questions that relate to
making an application perform a specific task.

• 5.4.1. How Do I Generate Debug Information?
• 5.4.2. Why No Disassembly in the MPLAB X IDE Disassembly Window?
• 5.4.3. How Do I Share Data Between Interrupt and Main-line Code?
• 5.4.4. How to Protect My Code After It Is Programmed Into a Device?
• 5.4.5. How Do I Redirect Standard I/O When Using Printf?
• 5.4.6. How Do I Place Variables in Off-Chip Memory?
• 5.4.7. How Can I Implement a Delay in My Code?
• 5.4.8. How Can I Rotate a Variable?

5.4.1 How Do I Generate Debug Information?
For the compiler and assembler, the command-line option -g is used to generate debugging information. For details,
refer to the following document (available on the Microchip website) and see the following section of this user’s guide:

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 43

7.6.5. Options for Debugging

5.4.2 Why No Disassembly in the MPLAB X IDE Disassembly Window?
You must enable the generation of debug information before you can see anything in the disassembly window. See
the following section of this user’s guide:

5.4.1. How Do I Generate Debug Information?

5.4.3 How Do I Share Data Between Interrupt and Main-line Code?
Variables accessed from both interrupt and main-line code can easily become corrupted or misread by the program.
The volatile qualifier tells the compiler to avoid performing optimizations on such variables. This will fix some of
the issues associated with this problem.

Other issues arise because the way variables are accessed can vary from statement to statement. Therefore it is
usually best to avoid these issues entirely by disabling interrupts prior to the variable being accessed in main-line
code, then to re-enable the interrupts afterwards. For more information on these solutions, see the following sections
of this user’s guide:

10.8.2. Volatile Type Qualifier

16.6. Enabling/Disabling Interrupts

5.4.4 How to Protect My Code After It Is Programmed Into a Device?
Many devices with flash program memory allow all or part of this memory to be write protected. The device
Configuration bits need to be set correctly for this to take place. For more on using Configuration bits, see the
following sections of this user’s guide:

8.4. Configuration Bit Access

4.4.14. Specifying Configuration Bits (CCI)

Your device data sheet is also a good resource for this question.

5.4.5 How Do I Redirect Standard I/O When Using Printf?
The printf function does two things: it formats text, based on the format string and placeholders you specify; and
it sends (prints) this formatted text to a destination (or stream). You can choose the printf output go to an LCD,
SPI module or USART, for example. For more on the using ANSI C function printf, including how to customize
the output so that it goes to another peripheral, refer to the following document. It is available for download from the
Microchip Technology website, www.microchip.com.

“16-Bit Language Tools Libraries Reference Manual” (DS50001456)

5.4.6 How Do I Place Variables in Off-Chip Memory?
To locate variables in off-chip memory, use the __external__ type qualifier. To locate variables in off-chip memory
across a Parallel Master Port (PMP), use the __pmp__ type qualifier.

The time required to access these variables is longer than for variables in the internal data memory. For details on
accessing off-chip memory, see the following sections of this user’s guide:

10.9.6. __external__ Type Qualifier

10.9.5. __pmp__ Type Qualifier

5.4.7 How Can I Implement a Delay in My Code?
Using a device timer to generate a delay is the best method. If no time is available, then you can use the library
functions _delay32, __delay_ms, or __delay_us, as they are described in the following document. It is available
for download from the Microchip Technology website, www.microchip.com.

“16-Bit Language Tools Libraries Reference Manual” (DS50001456)

5.4.8 How Can I Rotate a Variable?
The C language does not have a rotate operator, but rotations can be performed using the shift and bitwise OR
operators. For more information, see the following sections in this user’s guide:

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 44

4.3.10. Bitwise Operations on Signed Values (CCI)

4.3.11. Right-shifting Signed Values (Signed variables)

5.5 Understanding the Compilation Process
This section tells you how to find out what the compiler did during the build process, how it encoded output code,
where it placed objects, etc. It also discusses the features that are supported by the compiler.

• 5.5.1. How Does Licensing Affect Features and Optimization Levels?
• 5.5.2. Why Can’t I Debug my Code after I Optimize?
• 5.5.3. How Can I Make My Code Smaller?
• 5.5.4. How Can I Reduce RAM Usage?
• 5.5.5. How Can I Make My Code Faster?
• 5.5.6. What are the Speed vs. Size Tradeoffs?
• 5.5.7. How Can I Control Where the Language Tool Places Objects in Memory?
• 5.5.8. How Can I Make My Interrupt Routine Faster?
• 5.5.9. How Big Can C Variables Be?
• 5.5.10. Which Optimizations Will Be Applied to My Code?
• 5.5.11. Which Devices are Supported by the Compiler?
• 5.5.12. How Do I Know What Code the Compiler Is Producing?
• 5.5.13. How Can I Tell How Big a Function Is?
• 5.5.14. How Do I Learn Where Variables and Functions Have Been Positioned?
• 5.5.15. How Do I Properly Reserve Memory?
• 5.5.16. How Do I Know How Much Memory Is Still Available?
• 5.5.17. Which Libraries Get Included by Default?
• 5.5.18. How Do I Create My Own Libraries?
• 5.5.19. Why Do I Get Out-of-Memory Errors When I Select a Debugger?
• 5.5.20. How Do I Stop My Project's Checksum From Changing?
• See also, 5.6.1. How Do I Find Out What a Warning or Error Message Means?
• See also, 5.2.7. How Do I Build Libraries?
• See also, 5.2.9. What is Different About an MPLAB X IDE Debug Build?
• See also, 5.3.5.1. How Do I Stop A Function From Being Removed?

5.5.1 How Does Licensing Affect Features and Optimization Levels?
Different licenses vary in the features and optimizations available. See the following chapter of this user’s guide:

20. Optimizations

5.5.2 Why Can’t I Debug my Code after I Optimize?
Debugging optimized code can be challenging, but not impossible. See the following section of this user’s guide:

20.3. Using Optimizations

5.5.3 How Can I Make My Code Smaller?
General advice for creating smaller code:

• Do not mix data types.
• Define index variables in the native word width.
• Don't use floating-point variables when integers will suffice. When using floating-point variables, consider using

the smaller math libraries.
• Compiler option -mpa can be combined with any optimization level to reduce code size. See the following

chapter in this user’s guide:
20. Optimizations

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 45

Note:  Optimized code may be more difficult to debug.
• When initializing an SFR, use the full name of the SFR instead of bit names. You can initialize several fields at

once with this technique.
• Instead of copying code literally into several places in your program, reorganize the shared code into functions.
• Use the small code, small scalar, and large data memory models. Refer to the following section of this user’s

guide:
12.14. Memory Models

5.5.4 How Can I Reduce RAM Usage?
Try the following suggestions to reduce RAM usage:

1. Some of the same suggestions for making your code smaller can be useful to reduce RAM usage, see the
following section of this user’s guide:
5.5.3. How Can I Make My Code Smaller?

2. Rather than pass large objects to (or from) functions, pass pointers that reference these objects (to save stack
resources).

3. Objects that do not need to change throughout the program can be located in program memory using the
-mconst-in-code option and the const qualifier. This frees up precious RAM, but slows execution. Refer to
the following section of this user’s guide:
12.3. Variables in Program Space

5.5.5 How Can I Make My Code Faster?
Try the following suggestions for faster code execution:

1. Smaller code can be faster code. Reducing the number of machine instructions that are necessary to perform
a task will result in faster execution of that task. For details on making smaller and faster code, see the
following sections of this user’s guide:
5.5.3. How Can I Make My Code Smaller?

5.5.8. How Can I Make My Interrupt Routine Faster?
2. Depending on your compiler license, you may be able to use increasing optimization levels to generate faster

code. For details, see the following chapter and section of this user’s guide:
20. Optimizations

7.6.6. Options for Controlling Optimization
3. Algorithm choice has more impact on size and speed of your solution than any other factor. Choose the right

algorithm for the job.

5.5.6 What are the Speed vs. Size Tradeoffs?
Microchip's dsPIC architecture is primarily a 16-bit architecture. It is often less run-time efficient to use 8-bit values as
the compiler may have to extend the value to use it. There are times when this will save data space, but not always.
See the items below to help you make your code faster, smaller, or both.

• Array index variables and pointer offsets should always be defined as an integer sized type; size_t is often a
good choice. A different sized integer type will require the compiler to do a conversion at run-time.

• Automatic variables (function local variables) will often be allocated into a register at compile time. A register is
a minimum of 16 bits wide, so using a smaller type can require the compiler to generate extra code. Therefore,
unless 8-bit overflow rules are required, use 16-bit types instead. Also, the stack has alignment restrictions,
making stack accesses for smaller type objects possibly less efficient.

• Argument transmission (parameter passing) either happens in registers or on the stack. Reduce the chance of
generating conversions by avoiding the use of smaller than 16-bit objects.

• Objects that are defined at File scope, or function static scope, will consume less space if defined as 8-bit
typed objects. Be aware that data sections are aligned to 16 bits, so using named sections, or one of the other
attributes that might require a new section, may not provide the data size savings that are desired.

• MPLAB XC16 is free to reorder objects in File scope or automatic scope, but it is not allowed to re-order
structure members. Unless a pre-defined interface is being conformed to, try to allocate structure members
to group similarly-sized objects together, with bit-fields especially being grouped together. This will reduce the
number padding-bytes that may be inserted to maintain alignment requirements.

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 46

5.5.7 How Can I Control Where the Language Tool Places Objects in Memory?
In most situations, you should allow the language tool to place objects in memory. If you still want to place objects,
consult the following section of this user’s guide for details:

5.3.3. Memory Allocation

5.5.8 How Can I Make My Interrupt Routine Faster?
Try the following suggestions for faster ISR execution:

1. Smaller code is often faster code. For details, see the following section of this user’s guide:
5.5.3. How Can I Make My Code Smaller?

2. Suggestions to make code faster also work for ISR code. For details, refer to the following section of this
user’s guide:
5.5.5. How Can I Make My Code Faster?

3. Consider having the ISR simply set a flag and return. The flag can then be checked in main-line code to
handle the interrupt. This has the advantage of moving the complicated interrupt-processing code out of the
ISR so that it no longer contributes to its register usage. Always use the volatile qualifier for variables
shared by the interrupt and main-line code; see the following sections of this user’s guide:
10.8.2. Volatile Type Qualifier

5.4.3. How Do I Share Data Between Interrupt and Main-line Code?

5.5.9 How Big Can C Variables Be?
This question specifically relates to the size of individual C objects, such as arrays or structures. The total size of all
variables is another matter.

To answer this question you need to know the memory space in which the variable is to be located. When using the
-mconst-in-code option, objects qualified const will be located in program memory, other objects will be placed
in data memory. Program memory object sizes are discussed in the following section of this user’s guide:

12.3.3. Size Limitations of Program Memory Variables

Objects in data memory are broadly grouped into “autos” and “non-autos.” These objects have size limitations. For
more on auto and non-auto variables and the size limitations, see the following sections of this user’s guide:

12.2. Variables In Data Space Memory

12.2.3. Auto Variable Allocation and Access, "Auto Variable Size Limits"

12.2.2. Non-Auto Variable Allocation and Access, "Non-Auto Varible Size Limits"

5.5.10 Which Optimizations Will Be Applied to My Code?
Code optimizations available depend on your compiler license. For more information, refer to the following chapter
and section of this user’s guide:

20. Optimizations

7.6.6. Options for Controlling Optimization

5.5.11 Which Devices are Supported by the Compiler?
Support for new devices usually occurs with each compiler release. To learn whether a device is supported by your
compiler, see the following section in this user’s guide:

8.1. Device Support

5.5.12 How Do I Know What Code the Compiler Is Producing?
The assembly list file can be set up (using assembler listing file options) to contain a variety of information about the
code.That information could include assembly output for almost the entire program, library routines linked in to your
program, section information, symbol listings, and more.

The list file can be produced as follows:

• On the command line, create a basic list file using the option:
-Wa, -a=projectname.lst

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 47

• For MPLAB X IDE, right click on your project and select “Properties.” In the Project Properties window, click on
“xc16-as” under “Categories.” From “Option categories,” select “Listing file options” and ensure “List to file” is
checked.

By default, the assembly list file will have a .lst extension.

For information on the list file, refer to the following document. It is available for download from the Microchip
Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106).

5.5.13 How Can I Tell How Big a Function Is?
This size of a function (the amount of assembly code generated for that function) can be determined from the
assembly list file. See the following section of this user’s guide:

5.5.12. How Do I Know What Code the Compiler Is Producing?

5.5.14 How Do I Learn Where Variables and Functions Have Been Positioned?
The xc16-objdump utility displays information about one or more object files. Use the -t option to print the symbol
table entries of a file.

Also, you can determine where variables and functions have been positioned from the map file generated by the
linker. Only global symbols are shown in the map file.

There is a mapping between C identifiers and the symbols used in assembly code. The symbol associated with a
variable is assigned the address of the lowest byte of the variable; for functions it is the address of the first instruction
generated for that function. For more on xc16-objdump and linker map files, refer to the following document. It is
available for download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

5.5.15 How Do I Properly Reserve Memory?
Memory may be reserved by creating a specific section in the linker script or by using attributes to block out sections
of memory. If you have not used one of these methods to reserve memory, you may not be reserving the memory
you thought you were, and the linker may be placing objects in this area. For more on reserving memory, consult the
following document. It is available for download from the Microchip Technology website, www.microchip.com. Also
see the following section of this user’s guide.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

5.3.3.4. How Do I Stop the Compiler From Using Certain Memory Locations?

5.5.16 How Do I Know How Much Memory Is Still Available?
A memory usage summary is available from the compiler after compilation (--report-mem option) or from MPLAB
X IDE in the Dashboard window. All of these summaries indicate the amount of memory used and the amount still
available, but none indicate whether this memory is one contiguous block or broken into many small chunks. Since
small blocks of free memory cannot be used for larger objects, out-of-memory errors may be produced even though
the total amount of memory free is apparently sufficient for the objects to be positioned.

Consult the linker map file to determine exactly which memory is still available in each linker class. This file also
indicates the largest contiguous block in that class, if there are memory page divisions. See the following document
for information on the map file. It is available for download from the Microchip website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

5.5.17 Which Libraries Get Included by Default?
The compiler automatically includes any applicable standard library into the build process when you compile. So,
you never need to control these files. However, there are some libraries you must remember to include, such as any
libraries that do not come with the compiler. One can tell which standard libraries have been used in the resulting
compiled image by inspecting the MAP file. Archive members included from the standard library will be in a listing
that is associated with the symbol that prompted the inclusion of a particular standard library archive within the MAP.
For details on standard libraries, consult the following document. It is available for download from the Microchip
Technology website, www.microchip.com.

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 48

“16-Bit Language Tools Libraries Reference Manual” (DS50001456)

5.5.18 How Do I Create My Own Libraries?
To use one or more library files that were built by yourself or a colleague, include them in the list of files being
compiled on the command line. The library files can be specified in any position in the file list, relative to the source
files. However, if there is more than one library file, they will be searched in the order specified in the command line.

An example of specifying the library liblibrary.a on the command line is:

xc16-gcc -mcpu=33FJ256GP710 -T p33FJ256GP710.gld main.c int.c liblibrary.a
If you want to use the -l option, then:

xc16-gcc -mcpu=33FJ256GP710 -T p33FJ256GP710.gld main.c int.c -llibrary
If you are using MPLAB X IDE to build a project, add the library file(s) to the Libraries folder that is in your project,
and in the order in which they should be searched. The IDE will ensure that they are passed to the compiler at the
appropriate point in the build sequence. For information on how you build your own library files, see the following
section in this user’s guide:

7.3.1. Library Files, "User_Defined Libraries"

5.5.19 Why Do I Get Out-of-Memory Errors When I Select a Debugger?
If you use a hardware-tool debugger, RAM is required for debugging. See the following section in this user’s guide:

5.4.2. Why No Disassembly in the MPLAB X IDE Disassembly Window?

5.5.20 How Do I Stop My Project's Checksum From Changing?
The checksum that represents your built project (whether this is generated by the MPLAB X IDE or by tools such
as HEXMATE) is calculated from the generated output of the compiler. Indeed, the algorithms used to obtain the
checksum are specifically designed so that even small changes in this output are almost guaranteed to produce a
different checksum result. Checksums are not calculated from your project's source code, so to ensure that your
checksum does not change from build to build, you must ensure that the output of the compiler does not change.

The following actions and situations could cause changes in the compiled output and hence changes in your project's
checksum.

• Changing the source code, header files, or library code used by the project between builds
• Changing the order in which source files or libraries are compiled or linked between builds
• Having source code that makes using of macros such as __DATE__ and __TIME__, which produce output that

is dependent on when the project was built
• Moving the location of source files between builds, where those files use macros such as __FILE__, which

produces output that is dependent on where the source file is located
• Changing the compiler options between builds
• Changing the compiler version between builds

Also the checksum algorithms used by tools such as HEXMATE and the MPLAB X IDE can change, which can result
in a different checksum for the same compiler output. Such changes are rare, but check the compiler and IDE release
notes to see if the tools have been modified.

5.6 Fixing Code That Does Not Work
This section examines issues relating to projects that do not build due to compiler errors; or projects that do build but
do not work as expected.

• 5.6.1. How Do I Find Out What a Warning or Error Message Means?
• 5.6.2. How Do I Find the Code that Caused Compiler Errors Or Warnings in My Program?
• 5.6.3. How Can I Stop Warnings from Being Produced?
• 5.6.4. How Do I Know If the Stack Has Overflowed?
• 5.6.5. What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 49

• See also, 5.2. Invoking the Compiler
• See also, 5.5.15. How Do I Properly Reserve Memory?

5.6.1 How Do I Find Out What a Warning or Error Message Means?
Most warning and error messages are self-explanatory; however, some require an additional discussion. All MPLAB
XC16 warning and error messages are discussed in the appendix referenced below. Additionally, a discussion of how
to control message output is included in the following section of this user’s guide:

25. Diagnostics

7.6.4. Options for Controlling Warnings and Errors

5.6.2 How Do I Find the Code that Caused Compiler Errors Or Warnings in My Program?
In most instances the message produced by the compiler indicates the offending line of code where the syntax error
is relating to the source code. If you are compiling in MPLAB X IDE, you can double click the message and have the
editor take you to the offending line. But identifying the offending code is not always so easy.

In some instances, the error is reported on the line of code following the line that needs attention. This is because a C
statement is allowed to extend over multiple lines of the source file. It is possible that the compiler may not be able to
determine that there is an error until it has started to scan the next statement. Consider the following code:

input = PORTB // oops - forgot the semicolon
if(input>6)
 // ...

The missing semicolon on the assignment statement has been flagged on the following line that contains the if()
statement.

In other cases, the error might come from the assembler, not the compiler. If the source being compiled is an
assembly module, the error directly indicates the line of assembly code that triggered the error.

There are errors that do not relate to any particular line of code at all. An error in a compiler option or a linker error
are examples of these.

If you need to see the assembly code generated by the compiler, look in the assembly list file. For information on
where the linker attempted to position objects, see the map file. Consult the following document for information on the
list and map files. It is available for download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

5.6.3 How Can I Stop Warnings from Being Produced?
In general, you should not ignore warnings. Warnings indicate situations that could possibly lead to code failure.
Always check your code to confirm that it is not a possible source of error.

However, if you feel that you want to inhibit warning messages, do the following:

• Inhibit specific warnings by using the -Wno- version of the option.
• Inhibit all warnings with the -w option.
• In MPLAB X IDE, inhibit warnings in the Project Properties window under each tool category. Also look in the

Tool Options window, Embedded button, Suppressible Messages tab.

For details, see the following section in this user’s guide:

7.6.4. Options for Controlling Warnings and Errors

5.6.4 How Do I Know If the Stack Has Overflowed?
The 16-bit devices use a stack that's upper address boundary can be set in the SPLIM register. Therefore, it is
possible to set a stack level to prevent overflow.

Other stack errors, besides overflow, may be trapped and identified in code. For more information about using the
software stack, see the following sections of this guide:

12.2.3. Auto Variable Allocation and Access, "Software Stack"

12.2.3. Auto Variable Allocation and Access, "The C Stack Usage"

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 50

See the software stack in your device data sheet.

5.6.5 What Can Cause Corrupted Variables and Code Failure When Using Interrupts?
This is usually caused by having variables used in both interrupt and main-line code. If the compiler optimizes access
to a variable, or access is interrupted by an interrupt routine, then corruption can occur. See the following section of
this user’s guide:

5.4.3. How Do I Share Data Between Interrupt and Main-line Code?

How To's

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 51

6. XC16 Toolchain and MPLAB X IDE
The 16-bit language tools may be used together under MPLAB X IDE to provide GUI development of application
code for the dsPIC® DSC and PIC24 MCU families of devices.

6.1 MPLAB X IDE and Tools Installation
In order to use the 16-bit language tools with MPLAB X IDE, you must install:

• MPLAB X IDE, which is available for free on the Microchip website.
• MPLAB XC16 C Compiler, which includes all of the 16-bit language tools. The compiler is available for free

(Free and Evaluation license levels) or for purchase (PRO license level) on the Microchip website.

The 16-bit language tools will be installed, by default, in the directory:

• Windows OS 32-bit - C:\Program Files\Microchip\xc16\x.xx
• Windows OS 64-bit - C:\Program Files (x86)\Microchip\xc16\x.xx
• Mac OS - Applications/microchip/xc16/x.xx
• Linux OS - /opt/microchip/xc16/x.xx

where x.xx is the version number.

The executables for each tool will be in the bin subdirectory:

• C Compiler - xc16-gcc.exe
• Assembler - xc16-as.exe
• Object Linker - xc16-ld.exe
• Object Archiver/Librarian - xc16-ar.exe
• Other Utilities - xc16-utility.exe

Device support files may be found under the support subdirectory. The generic xc.h C header file and xc.inc
generic assembler include file may be found under the support/generic subdirectory.

6.2 MPLAB X IDE Setup
Once MPLAB X IDE is installed on your PC, launch the application and check the settings below to ensure that the
16-bit language tools are properly recognized.

1. From the MPLAB X IDE menu bar, select Tools>Options to open the Options dialog. Click on the Embedded
button and select the “Build Tools” tab.

2. Click on “XC16” under “Tool Collection.” Ensure that the paths are correct for your installation.
3. Click the OK button.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 52

Figure 6-1. XC16 Suite Tool Locations In Windows OS

6.3 MPLAB X IDE Projects
A project in MPLAB X IDE is a group of files needed to build an application, along with their associations to various
build tools. Below is a generic MPLAB X IDE project.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 53

Figure 6-2. Compiler Project Relationships

6.4 Operation Summary
In this MPLAB X IDE project, C source files are shown as input to the compiler. The compiler will generate source
files for input into the assembler.

Assembly source files are shown as input to the C preprocessor. The resulting source files are input to the assembler.
The assembler will generate object files for input into the linker or archiver.

Object files can be archived into a library using the archiver/librarian.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 54

The object files and any library files, as well as a linker script file (generic linker scripts are added automatically), are
used to generate the project output files via the linker. The output file generated by the linker is either an ELF or COF
file used by the simulator and debug tools. This file may be input into the bin2hex utility to produce an executable file
(.hex).

6.5 References
For more information on compiler operation refer to the following points of information:

• 7. Compiler Command-Line Driver.
• MPLAB® X IDE User’s Guide (DS50002027),

“Basic Tasks,” ”Create a New Project.”
• MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).

6.6 Project Setup
To set up an MPLAB X IDE project for the first time, use the built-in Project Wizard (File>New Project). In this wizard,
you will be able to select a language toolsuite that uses the 16-bit language tools. For more on the wizard and
MPLAB X IDE projects, see MPLAB X IDE documentation.

Once you have a project set up, you may then set up properties of the tools in MPLAB X IDE (see figure below).

1. From the MPLAB X IDE menu bar, select File>Project Properties to open a window to set/check project build
options.

2. Under “Conf:[default],” select a tool from the tool collection to set up.
Figure 6-3. Project Properties Window

6.6.1 XC16 (Global Options)
Set up global options for all 16-bit language tools. See also “6.6.6. Options Page Features”.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 55

Table 6-1. All Options Category

Option Description Command Line

Output file format Select either ELF/DWARF or COFF. -omf=elf
-omf=cof

Define common macros Add macros common to compiler, assembler and linker. -Dmacro
Generic build Build for a generic core device (no peripherals).

Use legacy libc Check to use libraries in the format before v3.25.
Uncheck to use the new (HI-TECH) libraries format.

-legacy-libc

Fast floating point math Check to use faster single and double floating point libraries,
which consume more RAM.
Uncheck to use original libraries which are slower but create
smaller code.

-fast-math

Relaxed floating point
math

Check to use relaxed-compliance math library. This is a math
library that follows slightly different rules than those the IEEE
standard dictates for infinities, NaNs, and denormal (tiny)
numbers.
Uncheck to use standard floating point math library.

-relaxed-math

Don’t delete intermediate
files

Check to not delete intermediate files. Place them in the object
directory and name them based on the source file.
Uncheck to remove intermediate files after a build.

-save-temps=obj

Common include dirs Directory paths entered here will be appended to the already
existing include paths of the compiler.
Relative paths are from the MPLAB X IDE project directory.

-Idir

6.6.2 xc16-as (16-bit Assembler)
A subset of command-line options may be specified in MPLAB X IDE. Select a category and then set up assembler
options. For additional options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
See also, “6.6.6. Options Page Features.”

Table 6-2. General Options Category

Option Description Command Line

Define ASM macros (.S
only)

Add assembler macros. -Dmacro

Assembler symbols Define symbol 'sym' to a given 'value'. --defsym sym=value
ASM include dirs Add a directory to the list of directories the assembler

searches for files specified in .include directives.
For more information, see 6.6.7. Additional Search Paths
and Directories

-I“dir”

Preprocessor include
dirs

Add a directory to the list of directories the compiler
preprocessor searches for files specified in .include
directives.
For more information, see 6.6.7. Additional Search Paths
and Directories

-I“dir”

Allow call optimization Check to turn relaxation on.
Uncheck to turn relaxation off.

--relax
--no-relax

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 56

...........continued
Option Description Command Line

Keep local symbols Check to keep local symbols, i.e., labels beginning with .L
(upper case only).
Uncheck to discard local symbols.

--keep-locals (-L)

Diagnostics level Select warnings to display in the Output window.

- Generate warnings --warn
- Suppress warnings --no-warn
- Fatal warnings --fatal-warnings

Additional driver options Enter any additional driver options not existing in the GUI.
The string you introduce here will be emitted as-is in the
driver invocation command.

Table 6-3. Listing File Options Category

Option Description Command Line

Include source code Check for a high-level language listing. High-level listings
require that the assembly source code is generated by
a compiler, a debugging option like -g is given to the
compiler, and assembly listings (-al) are requested.
Uncheck for a regular listing.

-ah

Include macros
expansions

Check to expand macros in a listing.
Uncheck to collapse macros.

-am

Omit false conditionals Check to omit false conditionals (.if, .ifdef) in a
listing.
Uncheck to include false conditionals.

-ac

Omit forms processing Check to turn off all forms processing
that would be performed by the listing
directives .psize, .eject, .title and .sbttl.
Uncheck to process by listing directives.

-an

Include assembly Check for an assembly listing. This -a suboption may be
used with other suboptions.
Uncheck to exclude an assembly listing.

-al

Include symbols Check for a symbol table listing.
Uncheck to exclude the symbol table from the listing.

-as

Omit debugging
directives

Check to omit debugging directives from a listing. This
can make the listing cleaner.
Uncheck to included debugging directives.

-ad

Include section
information

Check to display information on each of the code and
data sections. This information contains details on the
size of each of the sections and then a total usage of
program and data memory.
Uncheck to not display this information.

-ai

List to file Check to send listing information to a file.
Uncheck to send listing information to the Output
window.

-a=asmfilename.lst

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 57

6.6.3 xc16-gcc (16-bit C Compiler)
Although the MPLAB XC16 C Compiler works with MPLAB X IDE, it must be acquired separately. The full version
may be purchased, or a student (limited-feature) version may be downloaded for free. See the Microchip website
(www.microchip.com) for details.

A subset of command-line options may be specified in MPLAB X IDE. Select a category and then set up compiler
options. For additional options, see the 7.6. Driver Option Descriptions.

See also 6.6.6. Options Page Features.

Table 6-4. General Category

Option Description Command Line

Generate debugging info Create a COFF or ELF file with information to allow
debugging of code in MPLAB X IDE.
Note: COFF supports debugging in the .text section
only.

-g

Isolate each function in a
section

Check to place each function into its own section in
the output file. The name of the function determines the
section’s name in the output file.
Note: When you specify this option, the assembler and
linker may create larger object and executable files and
will also be slower.

Uncheck to place multiple functions in a section.

-ffunction-sections

Place data into its own
section

Place each data item into its own section in the output
file.
The name of the data item determines the name of the
section. When you specify this option, the assembler and
linker may create larger object and executable files and
will also be slower.

-fdata-sections

Use 64-bit double Use long double instead of double type equivalent
to float. Mixing this option across modules can have
unexpected results if modules share double data either
directly through argument passage or indirectly through
shared buffer space

-fno-short-double

Fill upper value for data
in flash

Fill upper flash memory with the value specified. -mfillupper=value

Name the text section Place text (program code) in a section named name
rather than the default .text section.

-mtext=name

Table 6-5. Memory Model Category

Option Description Command Line

Code model Select a code (program memory/ROM) model.
- default

- large (>32 K words)

- small (<32 K words)

-msmall-code
-mlarge-code
-msmall-code

Data model Select a data (data memory/RAM) model.
- default

- large (device dependent1)

- small (device dependent1)

device dependant2

-mlarge-data
-msmall-scalar

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 58

http://www.microchip.com

...........continued
Option Description Command Line

Scalar model Select a scalar model.
- default

- large (device dependent1)

- small (device dependent1)

-msmall-scalar
-mlarge-scalar
-msmall-scalar

Location of constant
model

Select a memory location for constants.
- default

- Data

- Code

-mconst-in-code
-mconst-in-data
-mconst-in-code

Place all code in auxiliary
flash

Place all code from the current translation unit into
auxiliary Flash. This option is only available on devices
that have auxiliary Flash.

-mauxflash

Put constants into
auxiliary flash

When combined with -mconst-in-code, put constants into
auxiliary Flash.

-mconst-in-auxflash

Allow arrays larger than
32K

Allow arrays that are larger than 32K, regardless of
memory model.

-menable-large-arrays

Aggregate data model Use aggregate data model. -mlarge-aggregate
Note: 

1. For most devices 6K of RAM is the near data space, but for some devices it is 4K of RAM.
2. For devices that have all of their data memory in the near space, the memory model is "small data"

"smallscalar" so that all memory will be allocated in the near space.
For all other devices the default memory model is "large data" "small scalar". This will have the effect
ofallowing the tool chain to place aggregate objects, such as arrays and structure, into the far memory space.
This can be over-ridden by explicitly selecting "small data" in the compiler options.

Table 6-6. OPTIMIZATION CATEGORY

Option Description Command Line

Optimization Level Select an optimization level. Equivalent to -On option,
where n is an option. See 7.6.6. Options for Controlling
Optimization.
Your compiler license may support only some
optimizations. See Chapter 18. “Optimizations.”

-On

Unroll loops Check to perform the optimization of loop unrolling. This
is only done for loops whose number of iterations can be
determined at compile time or run time.
Uncheck to not unroll loops.

-funroll-loops

Omit frame pointer Check to not keep the Frame Pointer in a register for
functions that don’t need one.
Uncheck to keep the Frame Pointer.

-fomit-frame-pointer

Unlimited procedural
abstraction

Enable the procedure abstraction optimization. There is
no limit on the nesting level.

-mpa

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 59

...........continued
Option Description Command Line

Procedural abstraction Enable the procedure abstraction optimization up to level
n.
Equivalent to -mpa=n option, where n equals:

• 0 - Optimization is disabled.
• 1 - The first level of abstraction is allowed; that is,

instruction sequences in the source code may be
abstracted into a subroutine.

• 2 or greater - A second level of abstraction is
allowed; that is, instructions that were put into a
subroutine in the first level may be abstracted into a
subroutine one level deeper. This pattern continues
for larger values of n. The net effect is to limit the
subroutine call nesting depth to a maximum of n.

-mpa=n

Align arrays Set the minimum alignment for array variables to be
the largest power of two less than or equal to their
total storage size, or the biggest alignment used on the
machine, whichever is smaller.

-falign-arrays

Table 6-7. Preprocessing and Messages Category

Option Description Command Line

Include C dirs Add the directory dir to the head of the list of directories to
be searched for header files.
For more information, see 6.6.7. Additional Search Paths
and Directories

-I"dir"

Define C macros Define macro macro with the string 1 as its definition. -Dmacro

ANSI-std C support Check to support all (and only) ASCI C programs.
Uncheck to support ASCI and non-ASCI programs.

-ansi

Use CCI syntax Check if your code is written per the Common C Interface
(CCI) syntax (see Chapter 2. “Common C Interface.”).
Uncheck if you are not.

-mcci

Use IAR syntax Check if your code is written per the Embedded Compiler
Compatibility Mode syntax for IAR (see Appendix B.
“Embedded Compiler Compatibility Mode”).
Uncheck if you are not.

-mext=IAR

Errata This option enables specific errata work-arounds identified by
ID.
Valid values for ID change from time to time and may not
be required for a particular variant. The ID all will enable
all currently supported errata work-arounds. The ID list will
display the currently supported errata identifiers along with a
brief description of the errata.

-merrata=id

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 60

...........continued
Option Description Command Line

Smart IO forwarding
level

This option attempts to statically analyze format strings
passed to printf, scanf and the ‘f’ and ‘v’ variations of these
functions. Uses of nonfloating point format arguments will
be converted to use an integer-only variation of the library
functions. Equivalent to -msmart-io=n option where n
equals:

• 0 - disables this option.
• 1 - only convert the literal values it can prove.
• 2 - causes the compiler to be optimistic and

convert function calls with variable or unknown format
arguments.

-msmart-io=n

Smart IO format strings Specifies what the format arguments are when the compiler
is unable to determine them.

Make warnings into
errors

Check to halt compilation based on warnings as well as
errors.
Uncheck to halt compilation based on errors only.

-Werror

Additional warnings Check to enable all warnings.
Uncheck to disable warnings.

-Wall

Strict ANSI warnings Check to issue all warnings demanded by strict ANSI C.
Uncheck to issue all warnings.

-pedantic

Disable ISR warn Disable warning for inappropriate use of ISR function names.
By default the compiler will produce a warning if the
interrupt is not attached to a recognized interrupt vector
name. This option will disable that feature.

-mno-isr-warn

Enable SFR warnings Enable warnings related to SFRs. -msfr-warn=on|off

6.6.4 xc16-ld (16-Bit Linker)
A subset of command-line options may be specified in MPLAB X IDE. Select a category, and then set up linker
options. For additional options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
See also “Options Page Features.”.

Table 6-8. GENERAL CATEGORY

Option Description Command Line

Heap size Specify the size of the heap in bytes.
Allocate a run-time heap of size bytes for
use by C programs. The heap is allocated
from unused data memory. If not enough
memory is available, an error is reported.

--heap size

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 61

...........continued
Option Description Command Line

Min stack size Specify the minimum size of the stack in
bytes. By default, the linker allocates all
unused data memory for the run-time stack.
Alternatively, the programmer may allocate
the stack by declaring two global symbols:
__SP_init and __SPLIM_init. Use this
option to ensure that at least a minimum
sized stack is available. The actual stack
size is reported in the link map output file.
If the minimum size is not available, an error
is reported.

--stack size

Use local stack Check to prevent allocating the stack in
extended data space memory.
Uncheck to allow allocating the stack in
extended data space memory.

--local-stack
--no-local-stack

Allow overlapped
sections

Check to not check section addresses for
overlaps.
Uncheck to check for overlaps.

--check-sections
--no-check-sections

Init data sections Check to support initialized data.
Uncheck to not support.

--data-init
--no-data-init

Pack data template Check to pack initial data values.
Uncheck to not pack.

--pack-data
--no-pack-data

Create handles Check to support far code pointers.
Uncheck to not support.

--handles
--no-handles

Create default ISR Check to create an interrupt function for
unused vectors.
Uncheck to not create a default ISR.

--isr
--no-isr

Remove unused sections Check to not enable garbage collection of
unused input sections (on some targets).
Uncheck to enable garbage collection.

--no-gc-sections
--gc-sections

Fill value for upper byte
of data

Enter a fill value for upper byte of data. Use
this value as the upper byte (bits 16-23)
when encoding data into program memory.
This option affects the encoding of sections
created with the psv or eedata attribute, as
well as the data initialization template if the
--no-pack-data option is enabled.

--fill-upper=value

Stack guardband size Enter a stack guardband size to ensure that
enough stack space is available to process a
stack overflow exception.

--stackguard=size

Additional driver options Type here any additional driver options not
existing in this GUI otherwise. The string you
introduce here will be emitted as is in the
driver invocation command.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 62

...........continued
Option Description Command Line

Use response file to link Check to create a makefile that uses a
response file for the link step. In Windows,
you have a maximum command line length
of 8191 chars. When linking long programs,
the link line might go over this limit.
MPLAB XC16 provides a response file work-
around. See MPLAB X IDE documentation,
Troubleshooting section, for details.
Uncheck to not use a response file.

Table 6-9. Symbols and Macros Category

Option Description Command Line

Linker symbols Create a global symbol in the output file containing the absolute
address (expr). You may use this option as many times as
necessary to define multiple symbols in the command line. A
limited form of arithmetic is supported for the expr in this context:
you may give a hexadecimal constant or the name of an existing
symbol, or use + and - to add or subtract hexadecimal constants
or symbols.

--defsym=sym

Define Linker macros Add linker macros. -Dmacro
Symbols Specify symbol information in the output.

- Keep all —

- Strip debugging info --strip-debug (-S)
- Strip all symbol info --strip-all (-s)

Table 6-10. Fill Flash Memory Category

Option Description Command Line

Which areas to fill Specify which area of Flash memory to fill.
No Fill - None (default).

Fill All Unused - Fill all unused memory.

Provide Range to fill - Fill a range of memory. Enter a range
under “Memory Address Range”.

How to fill it Specify how to fill Flash memory.
Provide sequence of values - Provide a sequence under the
Sequence option.

Constant or incrementing value - Provide either:

• Constant = a value,
Increment/Decrement = No Incrementing

• Constant = a value,
Increment/Decrement = Increment Const OR

Decrement Const,

Increment/Decrement Constant = a value

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 63

...........continued
Option Description Command Line

Sequence When Provide sequence of values is selected, enter a
sequence. The form is n1, n2, where n1 uses C syntax.
Example: 0x10, 25, 0x3F, 16.

--fill=sequence

Constant When Constant or incrementing value is selected, enter a
constant. Specify the constant using C syntax (e.g., 0x for hex,
0 for octal).
Example: 0x10 is the same as 020 or 16.

--fill=constant

Increment/Decrement When Constant or incrementing value is selected, you may
select to increment or decrement the initial value of “Constant” on
each consecutive address.
No Incrementing - Do not change constant value.

Increment Const - Increment the constant value by the amount
specified under the option “Increment/Decrement Constant.”

Decrement Const - Decrement the constant value by the amount
specified under the option “Increment/Decrement Constant.”

Increment/Decrement
Constant

When Increment Const or Decrement Const is selected, enter
a constant increment or decrement value. Specify the constant
using C syntax (e.g., 0x for hex, 0 for octal).
Example: 0x10 is the same as 020 or 16.

--
fill=constant+=in
cr
--fill=constant-
=decr

Memory Address
Range

When Provide Range to fill is selected, enter the range here.
Specify range as Start:End where Start and End use C syntax.
Example 0x100:0x1FF is the same as 256:511

.

--
fill=value@range

Table 6-11. Libraries Category

Option Description Command Line

Libraries Add libraries to be linked with the project files. You may
add more than one.

--library=name

Library directory Add a library directory to the library search path. You
may add more than one.

--library-path=“name”

Force linking of objects
that might not be
compatible

Check to force linking of objects that might not be
compatible. The linker will compare the project device
to information contained in the objects combined during
the link. If a possible conflict is detected, an error (in
the case of a possible instruction set incompatibility) or a
warning (in the case of possible register incompatibility)
will be reported. Specify this option to override such
errors or warnings.
Uncheck to not force linking.

--force-link
--no-force-link

Don’t merge I/O library
functions

Check to not merge I/O library functions. Do not attempt
to conserve memory by merging I/O library function calls.
In some instances the use of this option will increase
memory usage.
Uncheck to merge I/O library functions to conserve
memory.

--no-smart-io
--smart-io

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 64

...........continued
Option Description Command Line

Exclude standard
libraries

Check to not use the standard system startup files
or libraries when linking. Only use library directories
specified on the command line.
Uncheck to use the standard system startup files and
libraries.

--nostdlib

Table 6-12. Diagnostics Category

Option Description Command Line

Generate map file Create a map file. -Map=“file”
Display memory usage Check to print memory usage report.

Uncheck to not print a report.
--report-mem

Generate cross-
reference file

Check to create a cross-reference table.
Uncheck to not create this table.

--cref

Warn on section
realignment

Check to warn if start of section changes due to
alignment.
Uncheck to not warn.

--warn-section-align

Trace Symbols Add/remove trace symbols. --trace-symbol=symbol

Table 6-13. Code Guard Category

Option Description Command Line

Boot RAM Specify the boot RAM segment: none, small,
medium or large.

--boot=option_ram

Boot Flash Specify the boot Flash segment: none, small,
medium, or large standard or none, small,
medium, or large high.

--boot=option_flash_std
--boot=option_flash_high

Boot EEPROM Specify the boot EEPROM segment. --boot=eeprom
Boot write-protect Specify the boot write protected segment. --boot=write_protect
Secure RAM Specify the secure RAM segment: none, small,

medium or large.
--secure=option_ram

Secure Flash Specify the secure Flash segment: none, small,
medium, or large standard or none, small,
medium, or large high.

--secure=option_flash_std
--secure=option_flash_high

Secure EEPROM Specify the secure EEPROM segment. --secure=eeprom
Secure write-protect Specify the secure write protected segment. --secure=write_protect
General write-protect Specify the general write protected segment. --general=write_protect
General code-protect Specify the secure code protected segment:

standard or high.
--general=code_protect_std
--general=code_protect_high

For more information on CodeGuard™ options, see “Options that Specify CodeGuard Security Features” in the
MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
Note: Not all development tools support CodeGuard programming. See tool documentation for more information.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 65

6.6.5 xc16-ar (16-Bit Archiver/Librarian)
A subset of command-line options may be specified in MPLAB X IDE. Select a category, and then set up linker
options. For additional options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
See also, 6.6.6. Options Page Features.

Table 6-14. General Category

Option Description Command
Line

Break line into multiple lines For Windows OS, you have a maximum command line length
of 8191 chars. When archiving long sets of files into libraries,
the link line might go over this limit. The compiler can break up
the archive line into smaller lines to avoid this limitation.

true

6.6.6 Options Page Features
The Options section of the Properties page has the following features for all tools:

Table 6-15. Page Features Options

Reset Reset the page to default values.

Additional options Enter options in a command-line (non-GUI) format.

Option Description Click on an option name to see information on the option in this window. Not all
options have information in this window.

Generated Command Line Click on an option name to see the command-line equivalent of the option in this
window.

6.6.7 Additional Search Paths and Directories
For the compiler, assembler and linker, you may set additional paths to directories to be searched for include files and
libraries.

You may add as many directories as necessary to include a variety of paths. The current working directory is always
searched first and then the additional directories in the order in which they were specified.

All paths specified should be relative to the project directory, which is the directory containing the nbproject
directory.

6.7 Project Example
In this example, you will create an MPLAB X IDE project with two C code files.

6.7.1 Run the Project Wizard
In MPLAB X IDE, select File>New Project to launch the wizard.

1. Choose Project: Select “Microchip Embedded” for the category and “Standalone Project” for the project. Click
Next> to continue.

2. Select Device: Select PIC24FJ128GA010. Click Next> to continue.
3. Select Header: Select a header for this device if you are using one. Otherwise leave as “None.” Click Next> to

continue.
4. Select Tool: Choose a development tool from the list, which for this example is the Simulator. Tool support for

the selected device is shown as a colored circle next to the tool. Mouse over the circle to see the support as
text. Click Next> to continue.

5. Select Plugin Board: Select a plugin board if you are using one. Otherwise leave as “None.” Click Next> to
continue.

6. Select Compiler: Choose a version of the XC16 toolchain installed on your PC. Click Next> to continue.
7. Select Project Name and Folder: Enter a project name, for this example XC16_Example. Then select a

location for the project folder. Click Finish to complete the project creation and setup.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 66

Once the Project Wizard has completed, the Project window should contain the project tree. For more on projects,
see the MPLAB X IDE documentation.

6.7.2 Add a File to the Project
To add a C code template file to the project:

1. Right click on the “Source Files” folder in the project tree. Select New>mainXC16.c to open the “New
mainXC16.c” dialog.

2. Enter a name for the new file. The default is newmainXC16.c.
3. Enter a folder in which to place the file. The default is the project folder. Keeping the file in the project folder

makes the project more portable.
4. Click Finish.

The project tree should now have the Source Files folder open, containing the file added, as well as the new file open
in an Editor window (see following figure).

Note:  If you add more than one file, the order in which you add these files to the project is the order in which they
will be linked.

Figure 6-4. Project Tree and Source Code

6.7.3 Build and Run the Project
To set up build options, you can select File>Project Properties or right click on the project name and select
“Properties” to open the Project Properties dialog. For this example, default options will be used so no additional
set up is required.

Click the Debug Main Project icon to build the code, program the target device (if a hardware tool is selected)
and start the debug session. Because of the example code used, the application will run and then stop. To finish
execution, click the Finish Debugger Session icon.

Debug Main Project Icon

Finish Debugger Session Icon

If the build did not complete successfully, check these items:

1. Review the previous steps in this example. Make sure you have installed and set up the MPLAB XC16 C
compiler so that MPLAB X IDE can see it. See 6.2. MPLAB X IDE Setup.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 67

2. If you modified the sample source code, examine the Build tab of the Output window for syntax errors in the
source code. If you find any, click on the error to go to the source code line that contains that error. Correct the
error, and then try the build again.

6.7.4 Output Files
View the project output files by opening the files in MPLAB X IDE.

1. Select File>Open File. In the Open dialog, find the project directory. For example, in Windows 7 OS:
C:\Users\UserName\MPLABXProjects\XC16_Example.X

2. Under the project directory, locate the linker map file. For the example above:
C:\Users\UserName\MPLABXProjects\XC16_Example.X\
dist\default\debug\XC16_Example.X.debug.map

3. View the linker map file in an MPLAB X IDE editor window. For more on this file, see the linker documentation.
4. In the same directory there is another file, XC16_Example.X.debug.elf. This file contains debug

information and is used by debug tools to debug your code. For information on selecting the type of debug file,
see 6.6.1. XC16 (Global Options).

6.7.5 Further Development
In addition to the MPLAB X Simulator used in this example, several other debug tools exist that work with MPLAB
X IDE. You may choose from in-circuit emulators or in-circuit debuggers, manufactured by Microchip Technology or
third-party developers. Please see the documentation for these tools to learn how they can help you.

Once you have developed your code, you will want to program it into a device. Again, there are several programmers
that work with MPLAB X IDE to help you do this. Please see the documentation for these tools to see how they can
help you. When programming, use the Make and Program Device Project button on the debug toolbar. Please see
MPLAB X IDE documentation concerning this control.

XC16 Toolchain and MPLAB X IDE

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 68

7. Compiler Command-Line Driver
The compiler command-line driver (xc16-gcc) is the application that invokes the operation of the MPLAB XC16 C
Compiler. The driver compiles, assembles and links C and assembly language modules and library archives. Most of
the compiler command-line options are common to all implementations of the GCC toolset. A few are specific to the
compiler and will be discussed below.

The compiler driver also may be used with MPLAB X IDE. Compiler options are selected in the GUI and passed to
the compiler driver for execution.

7.1 Invoking the Compiler
The compiler is invoked and run on the command line as specified in the next section. Additionally, environmental
variables and input files used by the compiler are discussed in the following sections.

7.1.1 Drive Command-Line Format
The basic form of the compiler command line is:

xc16-gcc [options] files
where:

options: See 7.6. Driver Option Descriptions for available options.

files: See 7.1.3. Input File Types for details.

Note:  Command-line options and file name extensions are case-sensitive.

It is assumed in this manual that the compiler applications are either in the console’s search path (see
7.1.2. Environment Variables) or the full path is specified when executing any application.

It is conventional to supply options (identified by a leading dash “-”) before the file names, although this is not
mandatory.

The files may be any mixture of C and assembler source files and precompiled intermediate files, such as
relocatable object (.o) files. The order of the files is not important, except that it may affect the order in which code or
data appears in memory.

For example, to compile, assemble and link the C source file hello.c, creating a relocatable object output,
hello.elf.

xc16-gcc -mcpu=30f2010 -T p30f2010.gld -o hello.elf hello.c

7.1.2 Environment Variables
The variables in this section are optional, but if defined, they will be used by the compiler. The compiler driver, or
other subprogram, may choose to determine an appropriate value for some of the following environment variables if
they are unset. The driver, or other subprogram, takes advantage of internal knowledge about the installation of the
compiler. As long as the installation structure remains intact, with all subdirectories and executables remaining in the
same relative position, the driver or subprogram will be able to determine a usable value.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 69

Table 7-1. Compiler-Related Environmental Variables

Variable Definition

XC16_C_INCLUDE_PATH
PIC30_C_INCLUDE_PATH

This variable’s value is a semicolon-separated list of directories, much like PATH.
When the compiler searches for header files, it tries the directories listed in the
variable, after the directories specified with -I but before the standard header file
directories.
If the environment variable is undefined, the preprocessor chooses an appropriate
value based on the standard installation. By default, the following directories are
searched for the following include files:

<install-path>\include and

<install-path>\support\h

XC16_COMPILER_
PATH
PIC30_COMPILER_
PATH

The value of the variable is a semicolon-separated list of directories, much like PATH.
The compiler tries the directories thus specified when searching for subprograms, if it
can’t find the subprograms using PIC30_EXEC_PREFIX.

XC16_EXEC_
PREFIX
PIC30_EXEC_
PREFIX

If the environment variable is set, it specifies a prefix to use in the names of
subprograms executed by the compiler. No directory delimiter is added when this prefix
is combined with the name of a subprogram, but you can specify a prefix that ends
with a slash if you wish. If the compiler cannot find the subprogram using the specified
prefix, it tries looking in your PATH environment variable.
If the environment variable is not set or set to an empty value, the compiler driver
chooses an appropriate value based on the standard installation. If the installation
has not been modified, this will result in the driver being able to locate the required
subprograms.

Other prefixes specified with the -B command line option take precedence over the
user- or driver-defined value of the variable.

Under normal circumstances it is best to leave this value undefined and let the driver
locate subprograms itself.

XC16_LIBRARY_
PATH
PIC30_LIBRARY_
PATH

This variable’s value is a semicolon-separated list of directories, much like PATH. This
variable specifies a list of directories to be passed to the linker. The driver’s default
evaluation of this variable is:
<install-path>\lib; <install-path>\support\gld.

XC16_OMF
PIC30_OMF

Specifies the OMF (Object Module Format) to be used by the compiler. By default, the
tools create ELF object files. If the environment variable has the value coff, the tools
will create COFF object files.

TMPDIR If the variable is set, it specifies the directory to use for temporary files. The compiler
uses temporary files to hold the output of one stage of compilation that is to be used as
input to the next stage: for example, the output of the preprocessor, which is the input
to the compiler proper.

7.1.3 Input File Types
The compilation driver distinguishes source files, intermediate files and library files solely by the file type, or
extension. It recognizes the following file extensions, which are case-sensitive.

Table 7-2. File Names

Extensions Definition

file.c A C source file that must be preprocessed.

file.h A header file (not to be compiled or linked).

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 70

...........continued
Extensions Definition

file.i A C source file that should not be preprocessed.

file.o An object file.

file.p A pre procedural-abstraction assembly language file.

file.s Assembler code.

file.S Assembler code that must be preprocessed.

other A file to be passed to the linker.

There are no compiler restrictions imposed on the names of source files, but be aware of case, name-length and
other restrictions imposed by your operating system. If you are using an IDE, avoid assembly source files whose
basename is the same as the basename of any project in which the file is used. This may result in the source file
being overwritten by a temporary file during the build process.

The terms “source file” and “module” are often used when talking about computer programs. They are often used
interchangeably, but they refer to the source code at different points in the compilation sequence.

A source file is a file that contains all or part of a program. Source files are initially passed to the preprocessor by the
driver.

A module is the output of the preprocessor, for a given source file, after inclusion of any header files (or other source
files) which are specified by #include preprocessor directives. These modules are then passed to the remainder
of the compiler applications. Thus, a module may consist of several source and header files. A module is also often
referred to as a translation unit. These terms can also be applied to assembly files, as they too can include other
header and source files.

7.2 The Compilation Sequence
How the compiler operates with other applications and how to perform different types of compilations is discussed in
the following sections.

7.2.1 The Compiler Applications
The MPLAB XC16 C Compiler compiles C source files, producing assembly language files. These compiler-
generated files are assembled and linked with other object files and libraries to produce the final application program
in executable ELF or COFF file format. The ELF or COFF file can be loaded into the MPLAB X IDE, where it can
be tested and debugged, or the conversion utility can be used to convert the ELF or COFF file to Intel® hex format,
suitable for loading into the command-line simulator or a device programmer. A software development tools data flow
diagram is shown in the 6.3. MPLAB X IDE Projects section.

The driver program will call the required internal compiler applications. These applications are shown as the smaller
boxes inside the large driver box. The temporary file produced by each application can also be seen in this diagram.

The following table lists the compiler applications. The names shown are the names of the executables, which can be
found in the bin directory under the compiler’s installation directory. Your PATH environment variable should include
this directory.

Table 7-3. Compiler Application Names

Name Description

xc16-gcc Command line driver; the interface to the compiler

xc16-as Assembler (based on the target device)

xc16-ld Linker

xc16-bin2hex Conversion utility to create HEX files

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 71

...........continued
Name Description

xc16-strings String extractor utility

xc16-strip Symbol stripper utility

xc16-nm Symbol list utility

xc16-ar Archiver/Librarian

xc16-objdump Object file display utility

xc16-ranlib Archive indexer utility

7.2.2 Single-Step Compilation
A single command-line can be used to compile one file or multiple files.

Compiling a Single File

This section demonstrates how to compile and link a single file. For the purpose of this discussion, it is assumed the
compiler is installed in the standard directory location and that your PATH or other environment variables (see the
7.1.2. Environment Variables section) are set up in such a way that the full compiler path need not be specified when
you run the compiler.

The following is a simple C program that adds two numbers.

Create the following program with any text editor and save it as ex1.c.

#include <xc.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int
main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

The first line of the program includes the header file xc.h, which will include the appropriate header files that
provides definitions for all special function registers on the target device. For more information on header files, see
the 8.2. Device Header Files section.

Compile the program by typing the following at the prompt in your favorite terminal.

xc16-gcc -mcpu=30f2010 -T p30f2010.gld -o ex1.elf ex1.c
The command-line option -o ex1.elf names the output executable file (if the -o option is not specified, then the
output file is named a.out). The executable file may be loaded into the MPLAB X IDE.

If a hex file is required, for example, to load into a device programmer, then use the following command:

xc16-bin2hex ex1.elf
This creates an Intel hex file named ex1.hex.

Compiling Multiple Files

Move the Add() function into a file called add.c to demonstrate the use of multiple files in an application. That is:

File 1
/* ex1.c */

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 72

#include <xc.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}

File 2
/* add.c */
#include <xc.h>
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files in the one command by typing the following in your terminal program.

xc16-gcc -mcpu=30f2010 -T p30f2010.gld -o ex1.elf ex1.c add.c
This command compiles the modules ex1.c and add.c. The compiled modules are linked with the compiler libraries
and the executable file ex1.elf is created.

7.2.3 Multi-Step Compilation
Make utilities and integrated development environments, such as MPLAB IDE, allow for an incremental build of
projects that contain multiple source files. When building a project, they take note of which source files have changed
since the last build and use this information to speed up compilation.

For example, if compiling two source files, but only one has changed since the last build, the intermediate file
corresponding to the unchanged source file need not be regenerated.

If the compiler is being invoked using a make utility, the make file will need to be configured to recognize the
different intermediate file format and the options used to generate the intermediate files. Make utilities typically call
the compiler multiple times: once for each source file to generate an intermediate file and once to perform the second
stage compilation.

You may also wish to generate intermediate files to construct your own library files, although MPLAB XC16 is capable
of constructing libraries so this is typically not necessary. See MPLAB® XC16 Assembler, Linker and Utilities User’s
Guide (DS50002106) for more information on library creation.

For example, the files ex1.c and add.c are to be compiled using a make utility. The command lines that the make
utility should use to compile these files might be something like:

xc16-gcc -mcpu=30f6014 -c ex1.c
xc16-gcc -mcpu=30f6014 -c add.c
xc16-gcc -mcpu=30f6014 -o ex1 ex1.o add.o
The -c option will compile the named file into the intermediate (object) file format, but not link. Once all files are
compiled as specified by the make, then the resultant object files are linked in the final step to create the final output
ex1. The above example uses the command-line driver, xc16-gcc, to perform the final link step. You can explicitly
call the linker application, xc16-ld, but this is not recommended. When driving the linker application, you must specify
linker options, not driver options. For more on using the linker, see MPLAB® XC16 Assembler, Linker and Utilities
User’s Guide (DS50002106).

When compiling debug code, the object module format (OMF) must be consistent for compilation, assembly and
linking. The ELF/DWARF format is used by default but the COFF format may also be selected using -omf=coff or
the environmental variable XC16_OMF.

7.2.4 Assembly Compilation
A mix of C and assembly code can be compiled together using the compiler (6.3. MPLAB X IDE Projects). For more
details, see the 18. Mixing C and Assembly Code section.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 73

Additionally, the compiler may be used to generate assembly code (.s) from C code (.c) using the -S option. The
assembly output may then be used in subsequent compilation using the command-line driver.

7.3 Runtime Files
The compiler uses the following files in addition to source, linker and header files.

7.3.1 Library Files
The compiler may include library files into the output per Figure 6-2.

By default, xc16-gcc will search known locations under the compiler installation directory for library files that are
required during compilation.

Standard Libraries

The C standard libraries contain a standardized collection of functions, such as string, math and input/output routines.
The range of these functions is described in the “16-Bit Language Tool Libraries” (DS51456).

User-Defined Libraries

You may create your own libraries. Libraries are useful for bundling and precompiling selected functions so that
application file management is easier and application compilation times are shorter.

Libraries can be created manually using the compiler and the librarian. To create files that may then be used
as input to the 16-bit librarian (xc16-ar), use the -c compiler option to stop compilation before the linker
stage. For information on using the librarian, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106).

Libraries should be called liblibrary.a and can be added to the compiler command line by specifying its
pathname (-Ldir) and -llibrary. For details on these options, see section 7.6.9. Options for Linking.

A simple example of adding the library libmyfns.a to the command-line is:

xc16-gcc -mcpu=30f2010 -lmyfns example.c
Library files specified on the command line are scanned first for unresolved symbols, so these files may redefine
anything that is defined in the C standard libraries.

User-Defined Libraries Development

When creating your own libraries, follow the guidelines listed below.

Library and Supporting Files

No library file should contain a main() function, nor settings for configuration bits or any other such data.

As with Standard C library functions, any functions contained in user-defined libraries should have a declaration
added to a header file. It is common practice to create one or more header files that are packaged with the library file.
These header files can then be included into source code when required.

OMF Libraries

MPLAB XC16 supports two object file formats, often called OMF for object module format. COFF is an older standard
and is not recommend. ELF, combined with its debugging format DWARF, produces executables that contain a richer
language for describing the artifacts of the executable program from a debugging perspective.

Should you wish to produce generic libraries that are COFF and ELF compatible, we recommend that each library
be separated and named liblibrary-elf.a and liblibrary-coff.a. Each library, of course, should contain
objects built for the appropriate OMF. Naming the libraries in this way will allow the linker to choose a correct library
from the standard library inclusion option and the current OMF. In other words, -llibrary will match first against
liblibrary.a followed by liblibrary-OMF.a. This makes it easier to switch between COFF and ELF.

Device Specific and Generic Libraries

If you would like to produce a library that will be compatible with a range of 16-bit devices, you may need to include
more than one copy of each object file in the library. This is perfectly acceptable, as long as each copy has a unique
name. The linker will reject object files that do not match the characteristics of the user selected device.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 74

Consider a simple library that contains one file (and one function) name hello_world.c; you can guess at its use.
The desire of this function is to work on a range of devices, for example: dsPIC30F6014, dsPIC33EP512MU810 and
PIC24F16KA302. Compile hello_world.c once for each device and combine them into one library:

xc16-gcc -O1 -c hello_world.c -mcpu=30F6014 -o hello_world.30f.o
xc16-gcc -O1 -c hello_world.c -mcpu=33EP512MU810 -o hello_world.33ep.o
xc16-gcc -O1 -c hello_world.c -mcpu=24F16KA302 -o hello_world.24f.o
xc16-ar crv libhello_world-elf.a hello_world.30f.o hello_world.33ep.o hello_world.24f.o

This would produce a library that can be linked against any one of those devices.

xc16-gcc -O1 test.c -mcpu=30F6014 -o test.exe -L. -lhello_world
If a library is required to link against any device, the use of a set of generic device names, listed in
Readme_XC16.html or acquired directly from the tool using the compiler option -mprint-devices, will produce
object files that will link against any device.

7.3.2 Startup and Initialization
Two kinds of startup modules are available to initialize the C runtime environment:

• The primary startup module which is linked by default (or the -Wl, --data-init option.)
• The alternate startup module which is linked when the -Wl, --no-data-init option is specified (no data

initialization.)

These modules are included in the libpic30-omf.a archive/library. Multiple versions of these modules exist in
order to support architectural differences between device families. The compiler automatically uses the correct
module.

For more information on the startup modules, see 17.2. Runtime Startup and Initialization

7.4 Compiler Output
There are many files created by the compiler during the compilation. A large number of these are intermediate
files are deleted after compilation is complete, but many remain and are used for programming the device or for
debugging purposes.

7.4.1 Output Files
The compilation driver can produce output files with the following extensions, which are case-sensitive.

Table 7-4. File Names

Extensions Definition

file.hex Executable file

file.cof COF debug file (default)

file.elf ELF debug file

file.o Object file (intermediate file)

file.S Assembly code file (required preprocessing)

file.s Assembly code file (intermediate file)

file.i Preprocessed file (intermediate file)

file.p Preprocedure abstraction assembly language file (intermediate file)

file.map Map file

The names of many output files use the same base name as the source file from which they were derived. For
example the source file input.c will create an object file called input.o when the -c option is used.

The default output file is a ELF file called a.out, unless you override that name using the -o option.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 75

If you are using MPLAB X IDE to specify options to the compiler, there is typically a project file that is created for
each application. The name of this project is used as the base name for project-wide output files, unless otherwise
specified by the user. However check the manual for the IDE you are using for more details.

Note:  Throughout this manual, the term project name will refer to the name of the project created in the IDE.

The compiler is able to directly produce a number of the output file formats which are used by Microchip development
tools.

The default behavior of xc16-gcc is to produce a ELF output. To make changes to the files output or the file names,
see section7.6. Driver Option Descriptions.

7.4.2 Diagnostic Files
Two valuable files produced by the compiler are:

• The assembly list file, produced by the assembler.
• The map file, produced by the linker.

The assembly list file contains the mapping between the original source code and the generated assembly code. It is
useful for information such as how C source was encoded, or how assembly source may have been optimized. It is
essential when confirming if compiler-produced code that accesses objects is atomic, and shows the region in which
all objects and code are placed.

The option to create a listing file in the assembler is -a. There are many variants to this option, which may be
found in the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106). To pass the option from the
compiler, see section 7.6.8. Options for Assembling.

There is one list file produced for each build. Thus, if you require a list file for each source file, these files must be
compiled separately, see section7.2.3. Multi-Step Compilation. This is the case if you build using MPLAB IDE. Each
list file will be assigned the module name and extension .lst.

The map file shows information relating to where objects were positioned in memory. It is useful for confirming
if user-defined linker options were correctly processed, and for determining the exact placement of objects and
functions.

The linker option to create a map file in the linker application is -Map file, which may be found in the MPLAB®

XC16 Assembler, Linker and Utilities User’s Guide (DS50002106). To specify the option from the command-line
driver, see section 7.6.9. Options for Linking.

One map file is produced when you build a project, assuming that the linker was executed and ran to completion.

7.5 Compiler Messages
Compiler output messages for errors, warnings, or comments are discussed in the 25. Diagnostics section.

For information on options that control compiler output of errors, warnings, or comments, see section7.6.4. Options
for Controlling Warnings and Errors.

There are no pragmas that directly control messages issued by the compiler.

7.6 Driver Option Descriptions
The compiler has many options for controlling compilation, all of which are case-sensitive. They have been grouped,
as shown below, according to their function. Remember, these are options for the command-line driver; refer to either
section 7.6.8. Options for Assembling or 7.6.9. Options for Linking for information on specifying options for these
tools to the compiler.

7.6.1 Options Specific to 16-Bit Devices
For more information on the memory models, see section 12.14. Memory Models.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 76

Table 7-5. 16-Bit Device-Specific Options

Option Definition

-mcodecov This option is used for MPLAB® Code Coverage support. Passing the option -
mcodecov=near or -mcodecov=far to the compiler causes it to instrument the
generated assembly-instruction blocks with information that the MPLAB X IDE can then
use to perform a code coverage analysis. This feature requires MPLAB X IDE v5.25 or
later. For more on this features, visit:
www.microchip.com/mplab/codecoverage

-mconst-in-code Put const qualified variables in the auto_psv space. The compiler will access these
variables using the PSV window (This is the default).

-mconst-in-data Put const qualified variables in the data memory space.

-mconst-in-
auxflash

When combined with -mconst-in-code, put all const qualified file scope variables
into auxiliary Flash. All modules with auxiliary Flash should be compiled with this option;
otherwise a link error may occur.

-mcpu=
target

This option selects the target processor ID (and communicates it to the assembler and
linker if those tools are invoked). This option affects how some predefined constants
are set; see section 21.3. Predefined Macro Names for more information. A full list of
accepted targets can be seen in the Readme.htm file that came with the release.

-mdfp=path This option directs the compiler to use the device support included in the specified device
family pack (DFP). The directory should be to the 'xc16' folder within the pack. This option
is usually used by MPLAB X IDE or MPLAB IPE when specifying a pack.

-mno-eds-warn On some devices, there is a possibility that the stack will reside in EDS (extended data
space) memory (above 0x8000), though this allocation is disabled by default in the linker.
If the stack is located in this area, then taking the address of an auto variable would
require an __eds__ pointer. As the compiler does not know where the stack will be
located, the default is to be conservative and warn if the address of an auto is taken and
not used as an __eds__ pointer. This option disables the warning.

-merrata=
id[,id]*

This option enables specific errata workarounds identified by id. Valid values for id
change from time to time and may not be required for a particular variant. An id of list
will display the currently supported errata identifiers along with a brief description of the
errata. An id of all will enable all currently supported errata workarounds.

-mno-errata=
id[,id]*

This option disables specific errata workarounds identified by id. Valid values for
id change from time to time. This is particularly useful when specifying errata with
-merrata=all as it can be used to disable some errata that are not required. -mno-
errata=foo will prevent the erratum foo from being enabled no matter where it appears
on the command line. Therefore, -mno-errata=foo -merrata=foo will not enable
erratum foo.

-mno-file Do not emit a .file directive in the generated assembly file. This is useful when creating
libraries where the source code may not reside on the end-user's machine, as this will
prevent the IDE from trying to load the source file during a debug session.

-mfillupper Specify the upper byte of variables stored into space(prog) sections. The fillupper
attribute will perform the same function on individual variables.

-mlarge-arrays Specifies that arrays may be greater than or equal to the default maximum size of 32K.
See 12.2.2. Non-Auto Variable Allocation and Access, Non-Auto Variable Size Limits for
more information.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 77

https://www.microchip.com/mplab/codecoverage

...........continued
Option Definition

-mlarge-code Compile using the large code model. No assumptions are made about the locality of
called functions.
When this option is chosen, single functions that are larger than 32k are not supported
and may cause assembly-time errors since all branches inside of a function are of the
short form.

-mlarge-data Compile using the large data model. No assumptions are made about the location of
static and external variables.

-mlegacy-libc MPLAB XC16 (originally MPLAB C30) has a long history. This option allows us to support
previously deployed C libraries as needed (This is the default).

-moptimize-page
-setting

Attempt to reduce the number page switches when using memory modes that affect
the PSVPAG. This is really an optimization, and is not enabled by default. Like all
optimizations it will generally have a positive effect on performance or code size.

-mpa1. Enable the procedure abstraction optimization. There is no limit on the nesting level.
Optimization levels depend on the compiler edition (see section 20. Optimizations).

-mpa=n1. Enable the procedure abstraction optimization up to level n. If n is zero, the optimization
is disabled. If n is 1, first level of abstraction is allowed; that is, instruction sequences
in the source code may be abstracted into a subroutine. If n is 2, a second level of
abstraction is allowed; that is, instructions that were put into a subroutine in the first level
may be abstracted into a subroutine one level deeper. This pattern continues for larger
values of n. The net effect is to limit the subroutine call nesting depth to a maximum of n.
Optimization levels depend on the compiler edition (see 20. Optimizations).

-mno-pa1. Do not enable the procedure abstraction optimization (This is the default).

-mpreserve-all Make all variables in this translation unit preserved unless explicitly marked with the
update attribute.

-mprint-
builtins

Display the complete list of target builtin functions available in the compiler.

-mprint-devices Display the complete list of real and virtual devices supported by the current installation.

-mprint-mchp-
search-dirs

A target-specific option to output the compiler and assembler include search paths to the
console. These paths can change based upon various options.

-mno-isr-warn By default the compiler will produce a warning if the __interrupt__ is not attached to a
recognized interrupt vector name. This option will disable that feature.

-omf Selects the OMF (Object Module Format) to be used by the compiler. The omf specifier
can be one of the following:
elf Produce ELF object files (This is the default).

coff Produce COFF object files.

The debugging format used for ELF object files is DWARF 2.0.

-msfr-warn By default we warn when accessing SFRs for a generic device; use -mno-sfr-warn to
disable this feature.

-msmall-code Compile using the small code model. Called functions are assumed to be proximate
(within 32 Kwords of the caller). (This is the default.)

-msmall-data Compile using the small data model. All static and external variables are assumed to be
located in the lower 8 KB of data memory space. (This is the default.)

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 78

...........continued
Option Definition

-msmall-scalar Like -msmall-data, except that only static and external scalars are assumed to be in
the lower 8 KB of data memory space. (This is the default.)

-msmart-io-
format=fmt

When using smart-io the compiler is not able to detect the format string when it is a
variable. -msmart-io-format can be used to tell the compiler which format specifiers
to expect in such a string. For example:
printf(stderr,fmt,a,b,c);
can be compiled with -msmart-io-fmt=“%s%c%d” to define the default format and
smart-io will generate code to match this set of format specifiers when it cannot determine
the correct format specifiers at runtime.

-mtext=name Specifying -mtext=name will cause text (program code) to be placed in a section named
name rather than the default .text section. No white spaces should appear around the
=.

-mauxflash Place all code from the current translation unit into auxiliary Flash. This option is only
available on devices that have auxiliary Flash.

-msmart-io [=0|1|
2]

This option attempts to statically analyze format strings passed to printf, scanf and
the ‘f’ and ‘v’ variations of these functions. Uses of nonfloating point format arguments will
be converted to use an integer-only variation of the library functions.
-msmart-io=0 disables this option, while -msmart-io=2 causes the compiler to
be optimistic and convert function calls with variable or unknown format arguments.
-msmart-io=1 is the default and will only convert the literal values it can prove.

--partition n This option targets a single partition n in a dual partition device and will constrain the
output text to be contained within one panel.

Note 1: The procedure abstractor behaves as the inverse of inlining functions. The pass is designed to extract
common code sequences from multiple sites throughout a translation unit and place them into a common area
of code. Although this option generally does not improve the run-time performance of the generated code, it can
reduce the code size significantly. Programs compiled with -mpa can be harder to debug; it is not recommended
that this option be used while debugging using the COFF object format.
The procedure abstractor is invoked as a separate phase of compilation, after the production of an assembly file.
This phase does not optimize across translation units. When the procedure-optimizing phase is enabled, inline
assembly code must be limited to valid machine instructions. Invalid machine instructions or instruction sequences,
or assembler directives (sectioning directives, macros, include files, etc.), must not be used, or the procedure
abstraction phase will fail, inhibiting the creation of an output file.

7.6.2 Options for Controlling the Kind of Output
The following options control the kind of output produced by the compiler.

Table 7-6. Kind-of-Output Control Options

Option Definition

-c Compile or assemble the source files, but do not link. The default file extension is .o.

-E Stop after the preprocessing stage, i.e., before running the compiler proper. The default output file is
stdout.

-o file Place the output in file.

-S Stop after compilation proper (i.e., before invoking the assembler). The default output file extension
is .s.

--help Print a description of the command-line options.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 79

7.6.3 Options for Controlling the C Dialect
The following options define the kind of C dialect used by the compiler.

Table 7-7. C Dialect Control Options

Option Definition

-ansi Support all (and only) ANSI-standard C programs.

-aux-info filename Output to the given file name prototype declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C. Besides declarations, the file
indicates, in comments, the origin of each declaration (source file and line), whether
the declaration was implicit, prototyped or unprototyped (I, N for new or O for old,
respectively, in the first character after the line number and the colon), and whether
it came from a declaration or a definition (C or F, respectively, in the following
character). In the case of function definitions, a K&R-style list of arguments followed
by their declarations is also provided, inside comments, after the declaration.

-menable-
fixed[=rounding mode]

Enable fixed-point variable types and arithmetic operation support. Optionally, set
the default rounding mode to one of truncation, conventional, or convergent. If
the rounding mode is not specified, the default is truncation.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding environment is one in
which the standard library may not exist, and program startup may not necessarily
be at main. The most obvious example is an OS kernel. This is equivalent to
-fno-hosted.

-fno-asm Will not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Will not recognize built-in functions that do not begin with __builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char. (This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-
bitfields

These options control whether a bit-field is signed or unsigned, when the
declaration does not use either signed or unsigned. By default, such a bit-field
is signed, unless -traditional is used, in which case bit-fields are always
unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.

7.6.4 Options for Controlling Warnings and Errors
Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are risky or
suggest there may have been an error.

You can request many specific warnings with options beginning -W, for example, -Wimplicit, to request warnings
on implicit declarations. Each of these specific warning options also has a negative form beginning -Wno- to turn off
warnings, for example, -Wno-implicit. This manual lists only one of the two forms, whichever is not the default.

7.6.4.1 Options to Control the Amount and Types of Warnings
The following options control the amount and kinds of warnings produced by the compiler.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 80

Table 7-8. Warning/Error Options Implied by -Wall

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.

-w Inhibit all warning messages.

-Wall All of the -W options listed in this table combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid (or
modify to prevent the warning), even in conjunction with macros.

-Wchar-subscripts Warn if an array subscript has type char.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a /* comment, or whenever a
Backslash-Newline appears in a // comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit the warning messages, use
-Wno-div-by-zero. Floating point division by zero is not warned about, as it can be a
legitimate way of obtaining infinities and NaNs.
(This is the default.)

-Werror-implicit-
function-
declaration

Give an error whenever a function is used before being declared.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied have
types appropriate to the format string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-
function-
declaration

Give a warning whenever a function is used before being declared.

-Wimplicit-int Warn when a declaration does not specify a type.

-Wmain Warn if the type of main is suspicious. main should be a function with external linkage,
returning int, taking either zero, two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed. In the following example,
the initializer for a is not fully bracketed, but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

-Wmultichar
-Wno-multichar

Warn if a multi-character char constant is used. Usually, such constants are
typographical errors. Since they have implementation-defined values, they should not
be used in portable code. The following example illustrates the use of a multi-character
char constant:

char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as when there is an
assignment in a context where a truth value is expected, or when operators are nested
whose precedence people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that defaults to int. Also warn
about any return statement with no return-value in a function whose return-type is not
void.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 81

...........continued
Option Definition

-Wsequence-point Warn about code that may have undefined semantics because of violations of sequence
point rules in the C standard.
The C standard defines the order in which expressions in a C program are evaluated
in terms of sequence points, which represent a partial ordering between the execution
of parts of the program: those executed before the sequence point and those executed
after it. These occur after the evaluation of a full expression (one which is not part of
a larger expression), after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the evaluation of its arguments
and the expression denoting the called function), and in certain other places. Other than
as expressed by the sequence point rules, the order of evaluation of subexpressions
of an expression is not specified. All these rules describe only a partial order rather
than a total order, since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions are called is not
specified. However, the standards committee has ruled that function calls do not overlap.

It is not specified, when between sequence points modifications to the values of objects
take effect. Programs whose behavior depends on this have undefined behavior; the
C standard specifies that “Between the previous and next sequence point, an object
shall have its stored value modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value to be stored.” If
a program breaks these rules, the results on any particular implementation are entirely
unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and a[i+
+] = i;. Some more complicated cases are not diagnosed by this option and it may
give an occasional false positive result, but in general it has been found fairly effective at
detecting this sort of problem in programs.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a case
for one or more of the named codes of that enumeration. (The presence of a default
label prevents this warning.) case labels outside the enumeration range also provoke
warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system header files. Warnings from
system headers are normally suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler output harder to read. Using
this command line option tells the compiler to emit warnings from system headers as
if they occurred in user code. However, note that using -Wall in conjunction with this
option will not warn about unknown pragmas in system headers; for that, -Wunknown-
pragmas must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are enabled).

-Wuninitialized Warn if an automatic variable is used without first being initialized.
These warnings are possible only when optimization is enabled, because they require
data flow information that is computed only when optimizing.

These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile, or whose address
is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions, or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a
value that itself is never used, because such computations may be deleted by data flow
analysis before the warnings are printed.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 82

...........continued
Option Definition

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not understood by the compiler.
If this command line option is used, warnings will even be issued for unknown pragmas
in system header files. This is not the case if the warnings were only enabled by the
-Wall command line option.

-Wunused Warn whenever a variable is unused aside from its declaration, whenever a function
is declared static but never defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not used.
In order to get a warning about an unused function parameter, both -W and -Wunused
must be specified.

Casting an expression to void suppresses this warning for an expression. Similarly, the
unused attribute suppresses this warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined or a non-inline static function
is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress this warning, use the
unused attribute (see section 10.10. Variable Attributes).

-Wunused-variable Warn whenever a local variable or non-constant static variable is unused aside
from its declaration. To suppress this warning, use the unused attribute (see section
10.10. Variable Attributes).

-Wunused-value Warn whenever a statement computes a result that is explicitly not used. To suppress
this warning, cast the expression to void.

7.6.4.2 Options That Are Not Implied by -Wall
The following -W options are not implied by -Wall. Some of them warn about constructions that users generally
do not consider questionable, but which occasionally you might wish to check for. Others warn about constructions
that are necessary or hard to avoid in some cases, and there is no simple way to modify the code to suppress the
warning.

Table 7-9. Warning/Error Options not Implied by -Wall

Option Definition

-Wextra, -W Print extra warning messages for specific events. For details, see 7.6.4.3. The -W Option
section.

-Waggregate-return Warn if any functions that return structures or unions are defined or called.

-Wbad-function-
cast

Warn whenever a function call is cast to a non-matching type. For example, warn if int
foof() is cast to anything *.

-Wcast-align Warn whenever a pointer is cast, such that the required alignment of the target is
increased. For example, warn if a char * is cast to an int * .

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type qualifier from the target type.
For example, warn if a const char * is cast to an ordinary char *.

-Wconversion Warn if a prototype causes a type conversion that is different from what would happen
to the same argument in the absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the width or signedness of a
fixed point argument, except when the same as the default promotion.
Also, warn if a negative integer constant expression is implicitly converted to an unsigned
type. For example, warn about the assignment x = -1 if x is unsigned. But do not warn
about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 83

...........continued
Option Definition

-Winline Warn if a function can not be inlined and was either declared as inline, or else the
-finline-functions option was given.

-Wlarger-than=len Warn whenever an object of larger than len bytes is defined.

-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the warning messages, use
-Wno-long-long. Flags -Wlong-long and -Wno-long-long are taken into account
only when -pedantic flag is used.

-Wmissing-
declarations

Warn if a global function is defined without a previous declaration. Do so even if the
definition itself provides a prototype.

-Wmissing-
format-attribute

If -Wformat is enabled, also warn about functions that might be candidates for format
attributes. Note these are only possible candidates, not absolute ones. This option has
no effect unless -Wformat is enabled.

-Wmissing-noreturn Warn about functions that might be candidates for attribute noreturn. These are
only possible candidates, not absolute ones. Care should be taken to manually verify
functions. Actually, do not ever return before adding the noreturn attribute; otherwise
subtle code generation bugs could be introduced.

-Wmissing-
prototypes

Warn if a global function is defined without a previous prototype declaration. This warning
is issued even if the definition itself provides a prototype. (This option can be used to
detect global functions that are not declared in header files.)

-Wnested-externs Warn if an extern declaration is encountered within a function.

-Wno-deprecated-
declarations

Do not warn about uses of functions, variables and types marked as deprecated by using
the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an element of the structure or to
align the whole structure.

-Wpointer-arith Warn about anything that depends on the size of a function type or of void. The compiler
assigns these types a size of 1, for convenience in calculations with void * pointers and
pointers to functions.

-Wredundant-decls Warn if anything is declared more than once in the same scope, even in cases where
multiple declaration is valid and changes nothing.

-Wshadow Warn whenever a local variable shadows another local variable.

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning is also
enabled by -W; to get the other warnings of -W without this warning, use -W -Wno-
sign-compare.

-Wstrict-
prototypes

Warn if a function is declared or defined without specifying the argument types. (An
old-style function definition is permitted without a warning if preceded by a declaration
which specifies the argument types.)

-Wtraditional Warn about certain constructs that behave differently in traditional and ANSI C.
• Macro arguments occurring within string constants in the macro body. These would

substitute the argument in traditional C, but are part of the constant in ANSI C.
• A function declared external in one block and then used after the end of the block.
• A switch statement has an operand of type long.
• A nonstatic function declaration follows a static one. This construct is not accepted

by some traditional C compilers.

-Wundef Warn if an undefined identifier is evaluated in an #if directive.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 84

...........continued
Option Definition

-Wwrite-strings Give string constants the type const char[length] so that copying the address of
one into a non-const char * pointer will get a warning. These warnings will help you
find at compile time code that you can try to write into a string constant, but only if you
have been very careful about using const in declarations and prototypes. Otherwise, it
will just be a nuisance, which is why -Wall does not request these warnings.

7.6.4.3 The -W Option
Use the -W command line option to print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmp. These warnings are possible only
in optimizing compilation. The compiler sees only the calls to setjmp. It cannot know where longjmp will be
called; in fact, a signal handler could call it at any point in the code. As a result, a warning may be generated
even when there is in fact no problem, because longjmp cannot in fact be called at the place that would cause
a problem.

• A function could exit both via return value; and return;. Completing the function body without passing
any return statement is treated as return;.

• An expression-statement or the left-hand side of a comma expression contains no side effects. To suppress the
warning, cast the unused expression to void. For example, an expression such as x[i,j] will cause a warning,
but x[(void)i,j] will not.

• An unsigned value is compared against zero with < or <=.
• A comparison like x<=y<=z appears; this is equivalent to

(x<=y ? 1 : 0) <= z, which is a different interpretation from that of ordinary mathematical notation.
• Storage-class specifiers like static are not the first things in a declaration. According to the C Standard, this

usage is obsolescent.
• If -Wall or -Wunused is also specified, warn about unused arguments.
• A comparison between signed and unsigned values could produce an incorrect result when the signed value is

converted to unsigned. (But don’t warn if -Wno-sign-compare is also specified.)
• An aggregate has a partly bracketed initializer. For example, the following code would evoke such a warning,

because braces are missing around the initializer for x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all members. For example, the following code would cause
such a warning, because x.h would be implicitly initialized to zero:

struct s { int f, g, h; };

struct s x = { 3, 4 };

7.6.5 Options for Debugging
The following options are used for debugging.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 85

Table 7-10. Debugging Options

Option Definition

-g Produce debugging information.
The compiler supports the use of -g with -O making it possible to debug optimized code. The
shortcuts taken by optimized code may occasionally produce surprising results:

• Some declared variables may not exist at all;
• Flow of control may briefly move unexpectedly;
• Some statements may not be executed because they compute constant results or their values

were already at hand;
• Some statements may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the
optimizer for programs that might have bugs.

-Q Makes the compiler print out each function name as it is compiled, and print some statistics about
each pass when it finishes.

-save-
temps

Don’t delete intermediate files. Place them in the current directory and name them based on the
source file. Thus, compiling foo.c with -c -save-temps would produce the following files:
foo.i (preprocessed file)

foo.p (pre procedure abstraction assembly language file)

foo.s (assembly language file)

foo.o (object file)

7.6.6 Options for Controlling Optimization
The following options control compiler optimizations. Optimization levels available depend on the compiler license
(see the 20. Optimizations section).

Table 7-11. General Optimization Options

Option License Definition

-O0 All Do not optimize. (This is the default.)
Without -O, the compiler’s goal is to reduce the cost of compilation and to make debugging
produce the expected results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or change the
program counter to any other statement in the function and get exactly the results you would
expect from the source code.

The compiler only allocates variables declared register in registers.

-O
-O1

All Optimize for both speed and size. Optimizing compilation takes somewhat longer, and a lot
more host memory for a large function. With -O, the compiler tries to reduce code size and
execution time. The compiler turns on -fthread-jumps and -fdefer-pop and turns on
-fomit-frame-pointer.

-O2 All Optimize more for speed. -O2 turns on all optional optimizations except for loop
unrolling (-funroll-loops), function inlining (-finline-functions), and strict aliasing
optimizations (-fstrict-aliasing). It also turns on Frame Pointer elimination (-fomit-
frame-pointer). As compared to -O, this option increases both compilation time and the
performance of the generated code.

-O3 PRO Optimize even more for speed (superset of -O2). -O3 turns on all optimizations specified by -O2
and also turns on the inline-functions option.

-Os PRO Optimize even more for size (superset of -O2). -Os enables all -O2 optimizations that do not
typically increase code size. It also performs further optimizations designed to reduce code size.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 86

7.6.6.1 Options For Specific Optimization Control
The following options control specific optimizations. The -O2 option turns on all of these optimizations except
-funroll-loops, -funroll-all-loops and -fstrict-aliasing.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to be performed is desired.

Table 7-12. Specific Optimization Options

Option Definition

-falign-functions
-falign-
functions=n

Align the start of functions to the next power-of-two greater than n, skipping up to
n bytes. For instance, -falign-functions=32 aligns functions to the next 32-byte
boundary, but -falign-functions=24 would align to the next 32-byte boundary only
if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are equivalent and mean that
functions will not be aligned.

The assembler only supports this flag when n is a power of two; so n is rounded up. If n
is not specified, use a machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes like -
falign-functions. This option can easily make code slower, because it must insert
dummy operations for when the branch target is reached in the usual flow of the code.
If -falign-loops or -falign-jumps are applicable and are greater than this value,
then their values are used instead.

If n is not specified, use a machine-dependent default which is very likely to be 1,
meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like -falign-
functions. The hope is that the loop will be executed many times, which will make
up for any execution of the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that will be clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise be
produced.

-fcse-follow-jumps In common subexpression elimination, scan through jump instructions when the target of
the jump is not reached by any other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump when the condition tested is
false.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement with no
else clause, -fcse-skip-blocks causes CSE to follow the jump around the body of
the if.

-fexpensive-
optimizations

Perform a number of minor optimizations that are relatively expensive.

-ffunction-
sections
-fdata-sections

Place each function or data item into its own section in the output file. The name of the
function or the name of the data item determines the section’s name in the output file.
Only use these options when there are significant benefits for doing so. When you
specify these options, the assembler and linker may create larger object and executable
files and will also be slower.

See also 7.6.6.2. The -ffunction-sections Option.

-fgcse Perform a global common subexpression elimination pass. This pass also performs
global constant and copy propagation.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 87

...........continued
Option Definition

-fgcse-lm When -fgcse-lm is enabled, global common subexpression elimination will attempt to
move loads which are only killed by stores into themselves. This allows a loop containing
a load/store sequence to be changed to a load outside the loop, and a copy/store within
the loop.

-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops. When
used in conjunction with -fgcse-lm, loops containing a load/store sequence can be
changed to a load before the loop and a store after the loop.

-fno-defer-pop Always pop the arguments to each function call as soon as that function returns. The
compiler normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole optimizations occur at
various points during the compilation. -fno-peephole disables peephole optimization
on machine instructions, while -fno-peephole2 disables high level peephole
optimizations. To disable peephole entirely, use both options.

-foptimize-
register-move
-fregmove

Attempt to reassign register numbers in move instructions and as operands of other
simple instructions in order to maximize the amount of register tying.
-fregmove and -foptimize-register-moves are the same optimization.

-frename-registers Attempt to avoid false dependencies in scheduled code by making use of registers left
over after register allocation. This optimization will most benefit processors with lots of
registers. It can, however, make debugging impossible, since variables will no longer
stay in a “home register”.

-frerun-cse-after-
loop

Rerun common subexpression elimination after loop optimizations has been performed.

-frerun-loop-opt Run the loop optimizer twice.

-fschedule-insns Attempt to reorder instructions to eliminate Read-After-Write stalls (see your device
Family Reference Manual (FRM) for more details). Typically improves performance with
no impact on code size.

-fschedule-insns2 Similar to -fschedule-insns, but requests an additional pass of instruction scheduling
after register allocation has been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and elimination of iteration variables.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 88

...........continued
Option Definition

-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules applicable to the language
being compiled. For C, this
activates optimizations based on the type of expressions. In particular, an object of one
type is assumed never to reside at the same address as an object of a different type,
unless the types are almost the same. For example, an unsigned int can alias an
int, but not a void* or a double. A character type may alias any other type.
Pay special attention to code like this:

union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}

The practice of reading from a different union member than the one most recently written
to (called “type-punning”) is common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union type. So the code above
will work as expected, but the following code might not:

int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

-fthread-jumps Perform optimizations where a check is made to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch is
redirected to either the destination of the second branch or a point immediately following
it, depending on whether the condition is known to be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done for loops whose number of
iterations can be determined at compile time or run time. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all loops and usually makes
programs run more slowly. -funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

7.6.6.2 The -ffunction-sections Option
The -ffunction-sections command-line option will try and put all functions into its own section. However, there
are many conditions that can effect what exactly this means. Here is a summary:

• Normal (non interrupt) functions will have the current section name and a "." prepended to them, for example:
void foo() {}
will be placed into section .text.foo (the default code section name is .text).

• The default section name can be modified with the -mtext option. If this option has been used, then current
section name will be changed. For example, if -mtext=mytext is specified, then the above function will be
placed into mytext.foo.

• If the function has a section attribute, then it will be placed into that named section without any adulteration.
Therefore,
void __attribute__((section("mytext"))) foo() {}

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 89

will always be placed into the section mytext regardless of whether or not -ffunction-sections is
specified.

• Interrupt functions are normally placed into a special section with the name .isr prepended to the normal
section name (as above). Therefore if the current section name is .text (the default), then the ISR is placed
into .isr.text.function_name.
If the -mtext is used to change the name of the default section name, then this will be substituted instead
of .text. However, if a named section is used with a section attribute, .isr will still be prepended to the
section name.

The .isr is prepended to allow the --gc-sections option to not throw away interrupt functions. These must
be kept.

7.6.6.3 Options that Specify Machine-Independent Flags
Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative forms;
the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed (the one that is not
the default.)

Table 7-13. Machine-Independent Optimization Options

Option Definition

-finline-
functions

Integrate all simple functions into their callers. The compiler heuristically decides which
functions are simple enough to be worth integrating in this way. If all calls to a given function
are integrated and the function is declared static, then the function is normally not output
as assembler code in its own right.

-finline-
limit=n

By default, the compiler limits the size of functions that can be inlined. This flag allows
the control of this limit for functions that are explicitly marked as inline (i.e., marked with
the inline keyword). n is the size of functions that can be inlined in number of pseudo
instructions (not counting parameter handling). The default value of n is 10000. Increasing
this value can result in more inlined code at the cost of compilation time and memory
consumption.
Decreasing usually makes the compilation faster and less code will be inlined (which
presumably means slower programs). This option is particularly useful for programs that use
inlining.

Note:  Pseudo instruction represents, in this particular context, an abstract measurement of
function’s size. In no way does it represent a count of assembly instructions and as such, its
exact meaning might change from one release of the compiler to an another.

-fkeep-inline-
functions

Even if all calls to a given function are integrated, and the function is declared static, output
a separate run time callable version of the function. This switch does not affect extern inline
functions.

-fkeep-static-
consts

Emit variables declared static const when optimization isn’t turned on, even if the variables
aren’t referenced.
The compiler enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned on, use the
-fno-keep-static-consts option.

-fno-function-
cse

Do not put function addresses in registers; make each instruction that calls a constant
function contain the function’s address explicitly.
This option results in less efficient code, but some strange hacks that alter the assembler
output may be confused by the optimizations performed when this option is not used.

-fno-inline Do not pay attention to the inline keyword. Normally this option is used to keep the
compiler from expanding any functions inline. If optimization is not enabled, no functions can
be expanded inline.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 90

...........continued
Option Definition

-fomit-frame-
pointer

Do not keep the Frame Pointer in a register for functions that don’t need one. This avoids
the instructions to save, set up and restore Frame Pointers; it also makes an extra register
available in many functions.

-foptimize-
sibling-calls

Optimize sibling and tail recursive calls.

7.6.7 Options for Controlling the Preprocessor
The following options control the compiler preprocessor.

Table 7-14. Preprocessor Options

Option Definition

-Aquestion (answer) Assert the answer answer for question question, in case it is tested with a
preprocessing conditional such as #if #question(answer). -A- disables the
standard assertions that normally describe the target machine.
For example, the function prototype for main might be declared as follows:

#if #environ(freestanding)
int main(void);
#else
int main(int argc, char *argv[]);
#endif

A -A command-line option could then be used to select between the two prototypes.
For example, to select the first of the two, the following command-line option could be
used:

-Aenviron(freestanding)

-A -predicate
=answer

Cancel an assertion with the predicate predicate and answer answer.

-A predicate =answer Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-C Tell the preprocessor not to discard comments. Used with the -E option.

-dD Tell the preprocessor to not remove macro definitions into the output, in their proper
sequence.

-Dmacro Define macro macro with the string 1 as its definition.

-Dmacro=defn Define macro macro as defn. All instances of -D on the command line are processed
before any -U options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at
the end of preprocessing. Used with the -E option.

-dN Like -dD except that the macro arguments and contents are omitted. Only #define
name is included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be necessary if diagnostics are
being scanned by a program that does not understand the column numbers, such as
dejagnu.

-H Print the name of each header file used, in addition to other normal activities.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 91

...........continued
Option Definition

-iquote, -I- Any directories you specify with -I options before the -iquote options are searched
only for the case of #include "file"; they are not searched for #include
<file>.
If additional directories are specified with -I options after the -iquote, these
directories are searched for all #include directives (ordinarily all -I directories are
used this way).

In addition, the iquote option inhibits the use of the current directory (where the
current input file came from) as the first search directory for #include "file".
There is no way to override this effect of iquote. With -I. you can specify searching
the directory that was current when the compiler was invoked. That is not exactly the
same as what the preprocessor does by default, but it is often satisfactory.

iquote does not inhibit the use of the standard system directories for header files.
Thus, iquote and -nostdinc are independent.

-Idir Add the directory dir to the head of the list of directories to be searched for header
files. This can be used to override a system header file, substituting your own version,
since these directories are searched before the system header file directories. If you
use more than one -I option, the directories are scanned in left-to-right order; the
standard system directories come after.

-idirafter dir Add the directory dir to the second include path. The directories on the second
include path are searched when a header file is not found in any of the directories in
the main include path (the directory that -I adds within).

-imacros file Process file as input, discarding the resulting output, before processing the regular
input file. Because the output generated from the file is discarded, the only effect of
-imacros file is to make the macros defined in file available for use in the main
input.
Any -D and -U options on the command line are always processed before -imacros
file, regardless of the order in which they are written. All the -include and
-imacros options are processed in the order in which they are written.

-include file Process file as input before processing the regular input file. In effect, the contents
of file are compiled first. Any -D and -U options on the command line are always
processed before -include file, regardless of the order in which they are written.
All the -include and -imacros options are processed in the order in which they are
written.

-iprefix prefix Specify prefix as the prefix for subsequent -iwithprefix options.

-isystem dir Add a directory to the beginning of the second include path, marking it as a system
directory, so that it gets the same special treatment as is applied to the standard
system directories.

-iwithprefix dir Add a directory to the second include path. The directory’s name is made by
concatenating prefix and dir, where prefix was specified previously with -iprefix. If
a prefix has not yet been specified, the directory containing the installed passes of the
compiler is used as the default.

-iwithprefixbefore
dir

Add a directory to the main include path. The directory’s name is made by
concatenating prefix and dir, as in the case of -iwithprefix.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 92

...........continued
Option Definition

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of
each object file. For each source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose dependencies are all the
#include header files it uses. This rule may be a single line or may be continued
with \-newline if it is long. The list of rules is printed on standard output instead of the
preprocessed C program.
-M implies -E (see the 7.6.2. Options for Controlling the Kind of Output section).

-MD Like -M but the dependency information is written to a file and compilation continues.
The file containing the dependency information is given the same name as the source
file with a .d extension.

-MF file When used with -M or -MM, specifies a file in which to write the dependencies. If no
-MF switch is given, the preprocessor sends the rules to the same place it would have
sent preprocessed output.
When used with the driver options, -MD or -MMD, -MF, overrides the default
dependency output file.

-MG Treat missing header files as generated files and assume they live in the same
directory as the source file. If -MG is specified, then either -M or -MM must also be
specified. -MG is not supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files included with #include
“file”. System header files included with #include <file> are omitted.

-MMD Like -MD except mention only user header files, not system header files.

-MP This option instructs CPP to add a phony target for each dependency other than the
main file, causing each to depend on nothing. These dummy rules work around errors
make gives if you remove header files without updating the make-file to match.
This is typical output:

test.o: test.c test.h
test.h:

-MQ Same as -MT, but it quotes any characters which are special to make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o: foo.c
The default target is automatically quoted, as if it were given with -MQ.

-MT target Change the target of the rule emitted by dependency generation. By default, CPP
takes the name of the main input file, including any path, deletes any file suffix such
as .c, and appends the platform’s usual object suffix. The result is the target.
An -MT option will set the target to be exactly the string you specify. If you want
multiple targets, you can specify them as a single argument to -MT, or use multiple
-MT options.

For example:

-MT '$(objpfx)foo.o' might give $(objpfx)foo.o: foo.c

-nostdinc Do not search the standard system directories for header files. Only the directories you
have specified with -I options (and the current directory, if appropriate) are searched.
See 7.6.10. Options for Directory Search for information on -I.
By using both -nostdinc and -I-, the include-file search path can be limited to only
those directories explicitly specified.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 93

...........continued
Option Definition

-P Tell the preprocessor not to generate #line directives. Used with the -E option (see
the7.6.2. Options for Controlling the Kind of Output section).

-trigraphs Support ANSI C trigraphs. The -ansi option also has this effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D options, but before any
-include and -imacros options.

-undef Do not predefine any nonstandard macros (including architecture flags).

7.6.8 Options for Assembling
The following options control assembler operations. For more on available options, see the MPLAB® XC16
Assembler, Linker and Utilities User’s Guide (DS50002106).

Table 7-15. Assembly Options

Option Definition

-Wa,option Pass option as an option to the assembler. If option contains commas, it is split into multiple
options at the commas.
For example, to generate an assembly list file, use -Wa,-a.

7.6.9 Options for Linking
If any of the options -c, -S or -E are used, the linker is not run and object file names should not be used as
arguments. For more on available options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106).

Table 7-16. Linking Options

Option Definition

--fill=options Fill unused program memory. The format is:
--fill=[wn:]expression[@address[:end_address] | unused]
address and end_address will specify the range of program memory addresses to fill. If
end_address is not provided then the expression will be written to the specific memory
location at address address. The optional literal value unused may be specified to indicate
that all unused memory will be filled. If none of the location parameters are provided, all
unused memory will be filled. expression will describe how to fill the specified memory. The
following options are available:

A single value

xc16-ld --fill=0x12345678@unused
Range of values

xc16-ld --fill=1,2,3,4,097@0x9d000650:0x9d000750
An incrementing value

xc16-ld --fill=7+=911@unused
By default, the linker will fill using data that is instruction-word length. For 16-bit devices, the
default fill width is 24 bits. However, you may specify the value width using [wn:], where n is
the fill value's width and n belongs to [1, 3].

Multiple fill options may be specified on the command line; the linker will always process fill
options at specific locations first.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 94

...........continued
Option Definition

--gc-sections Remove dead functions from code at link time.
Support is for ELF projects only. In order to make the best use of this feature, add the
-ffunction-sections option to the compiler command line.

-Ldir Add directory dir to the list of directories to be searched for libraries specified by the
command-line option -l.

-legacy-libc Use legacy include files and libraries (v3.24 and before).
The format of include file and libraries changed in v3.25 to match HI-TECH C compiler format.

-llibrary Search the library named library when linking.
The linker searches a standard list of directories for the library, which is actually a file named
liblibrary.a. The linker then uses this file as if it had been specified precisely by name.

It makes a difference where in the command you write this option; the linker processes
libraries and object files in the order they are specified. Thus, foo.o -lz bar.o searches
library z after file foo.o but before bar.o. If bar.o refers to functions in libz.a, those
functions may not be loaded.

The directories searched include several standard system directories, plus any that you
specify with -L.

Normally the files found this way are library files (archive files whose members are object
files). The linker handles an archive file by scanning through it for members which define
symbols that have so far been referenced but not defined. But if the file that is found is an
ordinary object file, it is linked in the usual fashion. The only difference between using an -l
option (e.g., -lmylib) and specifying a file name (e.g., libmylib.a) is that -l searches
several directories, as specified.

By default the linker is directed to search:

<install-path>\lib
for libraries specified with the -l option.

This behavior can be overridden using the environment variables defined in the
21.3. Predefined Macro Names section.

-nodefaultlibs Do not use the standard system libraries when linking. Only the libraries you specify will
be passed to the linker. The compiler may generate calls to memcmp, memset and memcpy.
These entries are usually resolved by entries in the standard compiler libraries. These entry
points should be supplied through some other mechanism when this option is specified.

-nostdlib Do not use the standard system startup files or libraries when linking. No startup files and only
the libraries you specify will be passed to the linker.
The compiler may generate calls to memcmp, memset and memcpy. These entries are usually
resolved by entries in standard compiler libraries. These entry points should be supplied
through some other mechanism when this option is specified.

-s Remove all symbol table and relocation information from the executable.

-T script Specify the linker script file, script, to be used at link time. This option is translated into the
equivalent -T linker option.

-u symbol Pretend symbol is undefined to force linking of library modules to define the symbol. It is
legitimate to use -u multiple times with different symbols to force loading of additional library
modules.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 95

...........continued
Option Definition

-Wl,option Pass option as an option to the linker. If option contains commas, it is split into multiple
options at the commas.
For example, to generate a map file, use -W1, -Map=Project.map.

-Xlinker
option

Pass option as an option to the linker. You can use this to supply system-specific linker
options that the compiler does not know how to recognize.

7.6.10 Options for Directory Search
The following options specify to the compiler where to find directories and files to search.

Table 7-17. Directory Search Options

Option Definition

-specs=file Process file after the compiler reads in the standard specs file, in order to override the defaults
that the xc16-gcc driver program uses when determining what switches to pass to xc16-cc1,
xc16-as, xc16-ld, etc. More than one -specs=file can be specified on the command line,
and they are processed in order, from left to right.

7.6.11 Options for Code Generation Conventions
Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative forms;
the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed (the one that is not
the default.)

Table 7-18. Code Generation Convention Options

Option Definition

-fargument-
alias
-fargument-
noalias
-fargument-
noalias-global

Specify the possible relationships among parameters and between parameters and global
data.
-fargument-alias specifies that arguments (parameters) may alias each other and may
alias global storage.

-fargument-noalias specifies that arguments do not alias each other, but may alias
global storage.

-fargument-noalias-global specifies that arguments do not alias each other and do
not alias global storage.

Each language will automatically use whatever option is required by the language standard.
You should not need to use these options yourself.

-fcall-saved-
reg

Treat the register named reg as an allocatable register saved by functions. It may be
allocated even for temporaries or variables that live across a call. Functions compiled this
way will save and restore the register reg if they use it.
It is an error to used this flag with the Frame Pointer or Stack Pointer. Use of this flag for
other registers that have fixed pervasive roles in the machine’s execution model will produce
disastrous results.

A different sort of disaster will result from the use of this flag for a register in which function
values may be returned.

This flag should be used consistently through all modules.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 96

...........continued
Option Definition

-fcall-used-reg Treat the register named reg as an allocatable register that is clobbered by function calls.
It may be allocated for temporaries or variables that do not live across a call. Functions
compiled this way will not save and restore the register reg.
It is an error to use this flag with the Frame Pointer or Stack Pointer. Use of this flag for
other registers that have fixed pervasive roles in the machine’s execution model will produce
disastrous results.

This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register; generated code should never refer to it
(except perhaps as a Stack Pointer, Frame Pointer or in some other fixed role).
reg must be the name of a register, e.g., -ffixed-w3.

-fno-ident Ignore the #ident directive.

-fpack-struct Pack all structure members together without holes. Usually you would not want to use this
option, since it makes the code sub-optimal, and the offsets of structure members won’t
agree with system libraries.
The dsPIC® DSC device requires that words be aligned on even byte boundaries; so, care
must be taken when using the packed attribute to avoid run time addressing errors.

-fpcc-struct-
return

Return short struct and union values in memory like longer ones, rather than in registers.
This convention is less efficient, but it has the advantage of allowing capability between the
16-bit compiler compiled files and files compiled with other compilers.
Short structures and unions are those whose size and alignment match that of an integer
type.

-fno-short-
double

By default, the compiler uses a double type equivalent to float. This option makes
double equivalent to long double. Mixing this option across modules can have
unexpected results if modules share double data either directly through argument passage or
indirectly through shared buffer space. Libraries provided with the product function with either
switch setting.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the declared range of possible
values. Specifically, the enum type will be equivalent to the smallest integer type which has
enough room.

-fverbose-asm
-fno-verbose-
asm

Put extra commentary information in the generated assembly code to make it more readable.
-fno-verbose-asm, the default, causes the extra information to be omitted and is useful
when comparing two assembler files.

7.6.12 Miscellaneous Options
The following options do not fit in any of the previous categories.

Table 7-19. Miscellaneous Options

Option Definition

--nofallback By default, the tool will fall back to a free license when a network, or other license, is unavailable.
Specifying this option will prevent fallback and cause the compilation to fail instead.

-v Print the commands executed during each stage of compilation.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 97

...........continued
Option Definition

-x You can specify the input language explicitly with the -x option:
-x language

Specify explicitly the language for the following input files (rather than letting the compiler choose
a default based on the file name suffix). This option applies to all following input files until the next
-x option.

The following values are supported by the compiler:

c c-header cpp-output
assembler assembler-with-cpp
-x none

Turn off any specification of a language, so that subsequent files are handled according to their
file name suffixes. This is the default behavior but is needed if another -x option has been used.

For example:

xc16-gcc -x assembler foo.asm bar.asm -x none main.c mabonga.s
Without the -x none, the compiler will assume all the input files are for the assembler.

7.7 MPLAB X IDE Toolchain Equivalents
For information on related compiler options in MPLAB X IDE, see the 6. XC16 Toolchain and MPLAB X IDE.

Compiler Command-Line Driver

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 98

8. Device-Related Features
The MPLAB XC16 C Compiler provides some features that are purely device-related.

8.1 Device Support
As discussed in the 2. Compiler Overview section, the compiler supports all Microchip 16-bit devices; dsPIC30/33
digital signal controls (DSCs) and PIC24 microcontrollers (MCUs).

To determine the device support for your version of the compiler, consult the file Readme_XC16.html in the docs
subfolder of the compiler installation folder. For example:

C:\Program Files (x86)\Microchip\xc16\v1.10\docs\Readme_XC16.html

8.2 Device Header Files
One header file that is typically included in each C source file you will write is xc.h, a generic header file that will
include other device- and architecture-specific header files when you build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as macros which allow special memory
access or inclusion of special instructions.

Avoid including chip-specific header files in your code, as this reduces portability. However, device-specific compiler
header files are stored in the support/family/h directory for reference.

For information about assembly include files (*.inc), see the MPLAB® XC16 Assembler, Linker and Utilities User’s
Guide (DS50002106).

8.2.1 Register Definition Files
The processor header files described in 8.2. Device Header Files name all SFRs for each part, but they do not
define the addresses of the SFRs. A separate set of device-specific linker script files, one per part, is distributed in
the support/family/gld directory. These linker script files define the SFR addresses. To use one of these files,
specify the linker command-line option:

-T p30fxxxx.gld
where xxxx corresponds to the device part number.

For example, assuming that there is a file named app2010.c that contains an application for the dsPIC30F2010
part, then it may be compiled and linked using the following command line:

xc16-gcc -mcpu=30f2010 -o app2010.out -T p30f2010.gld app2010.c
The -o command-line option names the output executable file, and the -T option gives the linker script name for the
dsPIC30F2010 part. If p30f2010.gld is not found in the current directory, the linker searches in its known library
paths. The default search path includes all locations of preinstalled libraries and linker scripts.

You should copy the appropriate linker script file (supplied with the compiler) into your project directory before any
project-specific modifications are made.

8.2.2 Device Support Information
The following definitions are provided in each device header file.

Item Description

__XC16_PART_SUPPORT_
VERSION

A manifest constant representing the compiler release that this part-support
was released with.

__XC16_PART_SUPPORT_
UPDATE

A manifest constant representing the update increment of the part-support
data.

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 99

...........continued
Item Description

__write_to_IEC(X) A macro that wraps the expression X with an appropriate number of nop
instructions to ensure that the write to the IEC register has taken effect
before the program executes. For example:
__write_to_IEC(IEC0bits.T1IE = 0);
will not progress until the device has disabled the interrupt enable bit for T1
(Timer1).

8.2.3 Compile Time Memory Information
Each device header file incorporates macros to help identify memory sizes. For each memory region (RAM, Flash,
vector table, configuration words, etc.) the header file will define two symbols: a base address and a length in bytes.

The symbol name is formed from the following template: __<region_id>_BASE or __<region_id>_LENGTH.
These symbols may be used anywhere that preprocessing symbols are used.

For example:

 #if __DATA_LENGTH < 0x1000
 #error Please use a device with at least 4K of data memory
 #endif

8.3 Stack
The 16-bit devices use what is referred to in this user’s guide as a “software stack.” This is the typical stack
arrangement employed by most computers and is ordinary data memory accessed by a push-and-pop type
instruction and a stack pointer register. The term “hardware stack” is used to describe the stack employed by
Microchip 8-bit devices, which is only used for storing function return addresses.

The 16-bit devices dedicate register W15 for use as a software Stack Pointer. All processor stack operations,
including function calls, interrupts and exceptions, use the software stack. The stack grows upward, towards higher
memory addresses.

The dsPIC DSC device also supports stack overflow detection. If the Stack Pointer Limit register, SPLIM, is initialized,
the device will test for overflow on all stack operations. If an overflow should occur, the processor will initiate a stack
error exception. By default, this will result in a processor Reset. Applications may also install a stack error exception
handler by defining an interrupt function named _StackError. See 16. Interrupts for details.

The C run-time startup module initializes the Stack Pointer (W15) and the Stack Pointer Limit register during the
startup and initialization sequence. The initial values are normally provided by the linker, which allocates the largest
stack possible from unused data memory. The location of the stack is reported in the link map output file. Applications
can ensure that at least a minimum-sized stack is available with the --stack linker command-line option. See the
MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106) for details.

Alternatively, a stack of specific size may be allocated with a user-defined section from an assembly source file. In
the following example, 0x100 bytes of data memory are reserved for the stack:

.section *,data,stack

.space 0x100
The linker will allocate an appropriately sized section and initialize __SP_init and __SPLIM_init so that the
run-time startup code can properly initialize the stack. Note that since this is a normal assembly code section,
attributes such as address may be used to further define the stack. Please see the MPLAB® XC16 Assembler,
Linker and Utilities User’s Guide (DS50002106) for more information.

Related Links
12.2.3. Auto Variable Allocation and Access

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 100

8.4 Configuration Bit Access
Microchip devices have several locations which contain the configuration bits or fuses. These bits specify
fundamental device operation, such as the oscillator mode, watchdog timer, programming mode and code protection.
Failure to correctly set these bits may result in code failure or a non-running device.

Configuration Settings may be made using the preprocessor directive #pragma config and settings macros
specified under the docs subdirectory of the compiler install directory.

The directive format options are:

#pragma config setting = state|value
#pragma config register = value
where setting is a configuration setting descriptor (e.g., WDT), state is a descriptive value (e.g., ON) and value
is a numerical value. The register token may represent a whole configuration word register, e.g., CONFIG1L.

A list of all available settings by device may be found from MPLAB X IDE, Dashboard window, Compiler Help button
or from the command-line under:

<MPLAB XC16 Installation folder>/vx.xx/docs/config_index.html

8.5 Using SFRs
The Special Function Registers (SFRs) are registers which control aspects of the MCU operation or that of peripheral
modules on the device. These registers are device memory mapped, which means that they appear at, and can
be accessed using, specific addresses in the device’s data memory space. Individual bits within some registers
control independent features. Some registers are read-only; some are write-only. See your device data sheet for
more information.

Memory-mapped SFRs are accessed by special C variables that are placed at the address of the register. These
variables can be accessed like any ordinary C variable so that no special syntax is required to access SFRs.

The SFR variable identifiers are predefined in header files and are accessible once you have included the <xc.h>
header file (see 8.2. Device Header Files) into your source code. Structures with bit-fields are also defined so you
may access bits within a register in your source code.

A linker script file for the appropriate device must be linked into your project to ensure the SFR variable identifiers are
linked to the correct address. MPLAB IDE will link in a default linker script, but a linker script file must be explicitly
specified if you are driving the command-line toolchain. Linker scripts have a .gld extension (e.g., p30F6014.gld)
and basic files are provided with the compiler.

The convention in the processor header files is that each SFR is named, using the same name that appears in the
data sheet for the part – for example, CORCON for the Core Control register. If the register has individual bits that
might be of interest, then there will also be a structure defined for that SFR and the name of the structure will be
the same as the SFR name, with “bits” appended. For example, CORCONbits for the Core Control register. The
individual bits (or bit-fields) are named in the structure using the names in the data sheet – for example PSV for the
PSV bit of the CORCON register.

Here is the complete definition of CORCON (subject to change):

/* CORCON: CPU Mode control Register */
extern volatile unsigned int CORCON __attribute__((__sfr__));
typedef struct tagCORCONBITS {
 unsigned IF :1; /* Integer/Fractional mode */
 unsigned RND :1; /* Rounding mode */
 unsigned PSV :1; /* Program Space Visibility enable */
 unsigned IPL3 :1;
 unsigned ACCSAT :1; /* Acc saturation mode */
 unsigned SATDW :1; /* Data space write saturation enable */
 unsigned SATB :1; /* Acc B saturation enable */
 unsigned SATA :1; /* Acc A saturation enable */
 unsigned DL :3; /* DO loop nesting level status */
 unsigned :4;

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 101

} CORCONBITS;
extern volatile CORCONBITS CORCONbits __attribute__((__sfr__));

Note:  The symbols CORCON and CORCONbits refer to the same register and will resolve to the same address at link
time.

See MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106) for more information on using linker
scripts.

For example, the following is a sample real-time clock. It uses an SFR, e.g., TMR1, as well as bits within an SFR,
e.g., T1CONbits.TCS. Descriptions for these SFRs are found in the p30F6014.h file (this file will automatically be
included by <xc.h> so you do not need to include this into your source code). This file would be linked with the
device specific linker script which is p30F6014.gld.

Sample Real-Time Clock
/*
** Sample Real Time Clock for dsPIC
**
** Uses Timer1, TCY clock timer mode
** and interrupt on period match
*/

#include <xc.h>

/* Timer1 period for 1 ms with FOSC = 20 MHz */
#define TMR1_PERIOD 0x1388

struct clockType
 {
 unsigned int timer; /* countdown timer, milliseconds */
 unsigned int ticks; /* absolute time, milliseconds */
 unsigned int seconds; /* absolute time, seconds */
 } volatile RTclock;
void reset_clock(void)
 {
 RTclock.timer = 0; /* clear software registers */
 RTclock.ticks = 0;
 RTclock.seconds = 0;
 TMR1 = 0; /* clear timer1 register */
 PR1 = TMR1_PERIOD; /* set period1 register */
 T1CONbits.TCS = 0; /* set internal clock source */
 IPC0bits.T1IP = 4; /* set priority level */
 IFS0bits.T1IF = 0; /* clear interrupt flag */
 IEC0bits.T1IE = 1; /* enable interrupts */
 SRbits.IPL = 3; /* enable CPU priority levels 4-7*/
 T1CONbits.TON = 1; /* start the timer*/
 }
void __attribute__((__interrupt__,__auto_psv__)) _T1Interrupt(void)
 { static int sticks=0;
 if (RTclock.timer > 0) /* if countdown timer is active */
 RTclock.timer -= 1; /* decrement it */
 RTclock.ticks++; /* increment ticks counter */
 if (sticks++ > 1000)
 { /* if time to rollover */
 sticks = 0; /* clear seconds ticks */
 RTclock.seconds++; /* and increment seconds */
 }
 IFS0bits.T1IF = 0; /* clear interrupt flag */
 return;
 }

8.6 Bit-Reversed and Modulo Addressing
Bit-reversed and modulo addressing is supported on all dsPIC DSC devices.

Bit-reversed addressing is used for simplifying and speeding-up the writes to X-space data arrays in FFT (Fast
Fourier Transform) algorithms. When enabled, pre-increment or post-increment addressing modes will reverse the
lower order address bits used by instructions.

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 102

Modulo, or circular addressing, provides an automated means to support circular data buffers using the dsPIC
hardware. When used, software no longer needs to perform data address boundary checks on arrays.

The compiler does not directly support the use of bit-reversed and modulo addressing; that is, it cannot generate
code from C source that assumes these addressing modes are enabled when accessing memory. If either of these
addressing modes are set up on the target device, then it is the programmer’s responsibility to ensure that the
compiler does not use those registers that are specified to use either modulo or bit-reversed addressing as pointers.
Particular care must be exercised if interrupts can occur while one of these addressing modes is enabled.

It is possible to define arrays in C that will be suitably aligned in memory for modulo addressing by hand-written
assembly language functions. The aligned attribute may be used to define arrays that are positioned for use
as incrementing modulo buffers. Initialization of the start and end addresses, as well as the registers that modulo
address is applied must be written by hand to match the array specification. The reverse attribute may be used to
define arrays that are positioned for use as decrementing modulo buffers. For more information on these attributes,
see the 15.1.1. Function Specifiers section. For more information on bit-reversed or modulo addressing, see your
device Family Reference Manual (FRM).

8.7 Using EDS
EDS (Extended Data Space) is an architectural concept that allows the mapping of extra RAM into the 16-bit data
addressable area. This feature uses a paging scheme, mapping in 32K pages into the address range from 0x8000 to
0xFFFF (bit 15 is set). EDS is similar to PSV (Program Space Visibility) which all 16-bit devices support.

__eds__ is a compiler concept that allows this space to be used by either additional RAM or by FLASH. This is
an extension of the architectural PSV (Program Space Visisbility) window and compiler's __psv__/__prog__
interpretation. PSV only facilitates the mapping of FLASH pages; EDS allows mapping RAM or Flash pages.
__eds__ can be used on all 16-bit devices, even older devices that do not have any EDS memory. In this case,
__eds__ can be used to access Flash.

__eds__, __psv__, and __prog__ are treated as address space qualifiers and define an access method for the
compiler. These words are also used inside an address attribute to define permissible allocation.

__attribute__((space(psv))), or __attribute__((space(__psv__))), describe to the language tool
where an object may be placed. Access and allocation are separated to allow access to be defined by the individual
customer, if needed. Typically, an object allocated in a named address space would also be tagged with an address
space qualifier. Here are some examples:

__psv__ Tau object1 __attribute__((space(psv)));
__eds__ Tau object2 __attribute__((space(psv)));
object1 is allocated somewhere in PSV (Flash), and accessed through the compiler's __psv__ mechanism; the
compiler will manage the setting of the EDS page to access the object. object2 is also allocated in PSV but
accessed through the more general __eds__ mechanism, also completely managed by the compiler.

Pointer declarations may also have address space qualifiers, but not be allocated in a named address space. In this
case, it would represent a normal data space pointer, which is pointing to an object in one of the named address
spaces:

__psv__ int *pointer_to_psv_int;
int * __psv__ psv_pointer_to_int __attribute__((space(psv)));
The way to decode these is to read outwards from the object name. The first defines an object, in data space, that
points to an object in psv space. The 2nd defines an object that lives in psv space which points to an object in data
space; this object needs a space attribute to get located into an appropriate named address space.

See also 12.6. Extended Data Space Access

8.7.1 Memory Models and Address Spaces
By default, the compiler uses the const-in-code memory model, which will allocate const qualified objects into a
single PSV window, limited to 32K in size. This window will be the default page that is mapped into the EDS area in

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 103

the address map. The compiler requires that this page always be available if it is setup. This is often referred to as
the auto PSV memory model because the compiler automatically manages the PSV.

Other objects can be explicitly placed into different areas of memory using a space attribute, such as
__attribute__((space(psv))) for a windowed Flash area or __attribute__((space(eds))) for a RAM
area in the EDS space. When there is a need to nominate a Y memory space and have that be in EDS, use
__attribute__((space(eds))), which is equivalent to __attribute__((eds)).

When specifying an address space it is normal, but not required, to also use an address space qualifier. Doing so will
ask the compiler to manage the access to the named address space for you, which will mean always maintaining the
const-in-code page access if it is enabled.

8.7.2 Optimizations
Using the EDS/PSV address space qualifiers may be expensive. If your application footprint does not need to access
these variables often, then it may be more efficient to use the const-in-data memory model and manually place the
less often accessed data into a Flash space (using the named address attributes and qualifiers). This can reduce
the overhead by allowing the compiler to not force the EDS access to return to a single page. This model does
not preclude the use of an automatically managed PSV space; using space(auto_psv) allows the programmer to
nominate which const variables go into this area.

By default the compiler will arrange to assert the const-in-code page at the start of an interrupt service routine. If an
ISR does not need to access const data, then specifying __attribute__((no_auto_psv)) will let the compiler
know that the ISR, or any function it calls, does not use any auto PSV data.

The compiler also has an optimization setting that attempts to reduce the number of page swaps; not as a cache, but
modifications of the DSR/DSW/PSV Page SFR register. This is a separate switch, -moptimize-page-setting,
which can be applied at any optimization level. Like many optimizations, it generally reduces the number page setting
operations which may reduce code-size and improve application performance.

8.7.3 C Library Function Extensions
Named address space qualifiers are not part of the definition for the standard C library. In order to maintain C
compliance, MPLAB XC16 adds extended versions of some library functions instead of supporting a modified
signature.

For example, it is not possible to pass an __eds__ char * ponter to a printf %s argument.

MPLAB XC16 supports extended versions of memcpy, strcpy and strncpy standard C functions. Please see
the 16-Bit Language Tools Libraries Reference Manual (DS0001456), “Functions for Specialized Copying and
Initialization.”

8.8 Stack Usage Guidance
MPLAB XC16, in common with other Microchip MPLAB XC compiler offerings, provides a feature we are calling
'Stack Usage Guidance'. This is a compile-time static analysis of the executable meant to guide the user to an
appropriate worst-case stack usage requirement. As will be seen, this guidance may need to be tempered with other
facts that cannot be determined by a static analysis.

8.8.1 Usage
This feature requires a 'PRO' license and is enabled by adding -mchp-stack-usage to the normal link line, either
through the xc16-ld or xc16-gcc interface. The MPLAB X IDE Project Properties window provides a convenient
check box to enable to this feature under the category XC16>Analysis Tools.

When this feature is enabled, MPLAB XC16 will provide some additional information pertaining to the linked
executable to the terminal or build-output window of MPLAB X. Additionally, if a 'map' file is being specified, the
language tool will emit more detailed information to the Map file for a permanent record.

8.8.2 Operation
When enabled, MPLAB XC16 will analyze the complete executable and attempt to provide the amount of stack at
the deepest point in memory. Again, this is a static analysis and may be limited by the information that is available at

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 104

compile-time. During analysis, the tool may discover that a complete picture of the stack usage cannot be made. If
this is the case, additional information will be displayed on the output terminal. This information will also be recorded
in the Map file, if specified.

The following items may trigger a partial result to be made: recursion; explicit dynamic stack assignments or
adjustments; stack usage caused by interrupt functions; unconnected, or disjoint, functions or other executable code.
By definition, these types of items are dynamic and therefore their stack usage cannot be determined via static
analysis. More detail on these items follows.

The summary information is provided in the following form:

====================== STACK USAGE GUIDANCE ======================

In the call graph beginning at __reset(),
 324 bytes of stack are required.

All MPLAB XC16 executables start at __reset; so we provide stack guidance starting from this point.

8.8.2.1 Recursion
Recursion occurs when the program directly or indirectly causes a loop where there is a net adjustment of the stack
usage. MPLAB XC16 does not limit this identification across function boundaries; indeed (un)carefully constructed
assembly language programs could cause this error to be emitted even within a function boundary. The most obvious
example would be a traditional, recursive, implementation of factorial. A more subtle version from the standard C
library is fflush() - which, if given a NULL parameter, will call fflush() on all the currently open IO streams.

Any recursion that is detected will cause MPLAB XC16 to emit the following messages:

1. Recursion has been detected:
 _function_name (address 0x8bc)
No stack usage predictions can be made.

Each function, where the recursion has been detected, will appear in the list. The output to the Map file will also
contain the code address near where recursion has been detected.

8.8.2.2 Stack Adjustments
Any stack adjustments that cannot be determined at compile time will trigger a message. This may be caused by
assembly code writing a value explicitly to the stack pointer (W15) or by a variable allocation using alloca(). In this
case, we will emit the following diagnostic:

2. Indeterminate stack adjustment has been detected:
 _function_name (address 0x286c)
No stack usage predictions can be made.

Each function where stack adjustment has been detected will appear in the list. The output to the Map file will also
contain the code address near where adjustment has been detected.

8.8.2.3 Interrupt Functions
Every embedded application will have some interrupt functions. Unfortunately we cannot determine when these will
occur during the run-time flow of the application. When interrupt functions are discovered, we will emit the following
information:

3. The following labels are interrupt functions:
 __T1Interrupt uses 18 bytes (address 0x2f8)
We cannot determine the stack impact of these events. Please adjust the guidance according to
the application flow.

Each interrupt function will appear in the list. It will contain the amount of stack that is used by that interrupt including
any functions that may be called. The code address of the interrupt handler will be emitted to the Map file.

The total amount of allocated stack should be increased by the total amount of stack that can be consumed by the
largest interrupt flow; this would include any interrupts that may themselves be interrupted. Your application may limit
which interrupts are themselves interruptible using various means. As the application developer, please adjust the
stack usage based upon your knowledge of how the nested interrupt system will work in your application.

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 105

8.8.2.4 Unconnected Executable Code
Unconnected executable code cannot be reached by normal flow analysis. Perhaps this code represents functions
that are never called, or functions that are called indirectly via function pointers. In any event, we cannot determine
when or if these functions are actually called. When detected, the tool will emit the following messages:

4. The following labels cannot be connected to the main call graph.
This is usually caused by some indirection:
 _function_name uses 10 bytes (address 0x598)
We cannot determine the stack impact of these events. Please adjust the guidance according to
the application flow.

Each block of code that cannot be reached will be displayed along with the amount of stack consumed. The address
of the code block will be presented only in the Map file. These may not be complete functions, though it is unlikely for
C code.

8.8.3 Using the Guidance
The value given in the stack guidance only represents what the tool can see. It does not include any 'stack guard'
setting that might be present. The default stack guard is 16-bytes, but this is configurable for each project. Adjust the
guidance based upon the caveats that may be presented in the report. An explicit stack can be allocated using the
features described in the 12.2.3.2. The C Stack Usage section. A minimum stack size can be enforced using the
features described in the 12.2.3.1. Software Stack section.

Device-Related Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 106

9. Differences Between MPLAB XC16 and ANSI C
This compiler conforms to the ANSI X3.159-1989 Standard for programming languages. This is commonly called the
C89 Standard. It is referred to as the ANSI C Standard in this manual. Some features from the later standard C99 are
also supported.

9.1 Divergence from the ANSI C Standard
There are no divergences from the ANSI C standard.

9.2 Extensions to the ANSI C Standard
The MPLAB XC16 C Compiler provides extensions to the ANSI C standard in these areas: keywords and
expressions.

Keyword Differences

The new keywords are part of the base GCC implementation and the discussions in the referenced sections are
based on the standard GCC documentation, tailored for the specific syntax and semantics of the 16-bit compiler port
of GCC.

• Specifying Attributes of Variables – 10.10. Variable Attributes
• Specifying Attributes of Functions – 15.1.1. Function Specifiers
• Inline Functions – 15.5. Inline Functions
• Variables in Specified Registers – 12.10. Allocation of Variables to Registers

Expression Differences

Expression differences are:

Binary Constants – 10.7. Literal Constant Types and Formats

9.3 Implementation-Defined Behavior
Certain features of the ANSI C standard have implementation-defined behavior. This means that the exact behavior
of some C code can vary from compiler to compiler.

The exact behavior of the MPLAB XC16 C Compiler is detailed throughout this documentation, and is fully
summarized in 23. Implementation-Defined Behavior.

Differences Between MPLAB XC16 and ANSI C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 107

10. Supported Data Types and Variables
The MPLAB XC16 C Compiler supports a variety of data types and qualifiers (attributes). These data types and
variables are discussed here. For information on where variables are stored in memory, see section 12. Memory
Allocation and Access.

10.1 Identifiers
A C variable identifier (as well as a function identifier) is a sequence of letters and digits where the underscore
character, “_”, counts as a letter. Identifiers cannot start with a digit. Although they may start with an underscore, such
identifiers are reserved for the compiler’s use and should not be defined by your programs. Such is not the case for
assembly domain identifiers, which often begin with an underscore, see the MPLAB® XC16 Assembler, Linker and
Utilities User’s Guide (DS50002106).

Identifiers are case sensitive, so main is different from Main.

All characters are significant in an identifier, although identifiers longer than 31 characters in length are less portable.

10.2 Integer Data Types
The following table shows integer data types that are supported in the compiler. All unspecified or signed integer data
types are arithmetic type signed integer. All unsigned integer data types are arithmetic type unsigned integer.

Table 10-1. Integer Data Types

Type Bits Min. Max.

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int 16 -32768 32767

unsigned int 16 0 65535

long, signed long 32 -231 231 - 1

unsigned long 32 0 232 - 1

long long*, signed long long* 64 -263 263 - 1

unsigned long long* 64 0 264 - 1

* ANSI-89 extension

There is no type for storing single bit quantities.

All integer values are specified in little endian format, which means:

• The least significant byte (LSB) is stored at the lowest address
• The least significant bit (LSb) is stored at the lowest-numbered bit position

As an example, the long value of 0x12345678 is stored at address 0x100 as follows:

0x100 0x101 0x102 0X103
0x78 0x56 0x34 0x12

As another example, the long value of 0x12345678 is stored in registers w4 and w5:

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 108

w4 w5

0x5678 0x1234

Signed values are stored as a two’s complement integer value.

Preprocessor macros that specify integer minimum and maximum values are available after including <limits.h>
in your source code, located by default in:

<install directory>\include
As the size of data types is not fully specified by the ANSI Standard, these macros allow for more portable code
which can check the limits of the range of values held by the type on this implementation.

For information on implementation-defined behavior of integers, see 23.5. Integers.

10.2.1 Double-Word Integers
The compiler supports data types for integers that are twice as long as long int. Simply write long long int for
a signed integer, or unsigned long long int for an unsigned integer. To make an integer constant of type long
long int, add the suffix LL to the integer. To make an integer constant of type unsigned long long int, add
the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types.

10.2.2 char Types
The compiler supports data types for char, which defaults to signed char. An option can be used to use
unsigned char as the default, see 7.6.3. Options for Controlling the C Dialect.

It is a common misconception that the C char types are intended purely for ASCII character manipulation. This is not
true; indeed, the C language makes no guarantee that the default character representation is even ASCII (however,
this implementation does use ASCII as the character representation). The char types are simply the smallest of the
multi-bit integer sizes and behave in all respects like integers. The reason for the name “char” is historical and does
not mean that char can only be used to represent characters. It is possible to freely mix char values with values
of other types in C expressions. With the MPLAB XC16 C Compiler, the char types will commonly be used for a
number of purposes: as 8-bit integers, as storage for ASCII characters and for access to I/O locations.

10.3 Floating-Point Data Types
The compiler uses the IEEE-754 format. The following table shows floating point data types that are supported. All
floating point data types are arithmetic type real.

Table 10-2. Floating Point Data Types

Type Bits E Min E Max N Min N Max

float 32 -126 127 2-126 2128

double* 32 -126 127 2-126 2128

long double 64 -1022 1023 2-1022 21024

E = Exponent
N = Normalized (approximate)

* double is equivalent to long double if -fno-short-double is used.

All floating point values are specified in little endian format, which means:

• The least significant byte (LSB) is stored at the lowest address
• The least significant bit (LSb) is stored at the lowest-numbered bit position

As an example, the double value of 1.2345678 is stored at address 0x100 as follows:

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 109

0x100 0x101 0x102 0X103
0x51 0x06 0x9E 0x3F

As another example, the double value of 1.2345678 is stored in registers w4 and w5:

w4 w5

0x0651 0x3F9E

Floating-point types are always signed and the unsigned keyword is illegal when specifying a floating-point type.
Preprocessor macros that specify valid ranges are available after including <float.h> in your source code. For
information on implementation-defined behavior of floating point numbers, see section 23.6. Floating Point.

10.4 Fixed-Point Data Types
The following table shows fixed-point data types that are supported by the compiler when the -menable-fixed
command line option is specified. See 11. Fixed-Point Arithmetic Support for more details on the compiler's support
for the fixed-point C language dialect. If the signed or unsigned type specifier is not present, the type is assumed to
be signed.

Table 10-3. Fixed Point Integer Data Types

Type Bits Min Max

_Fract 16 -1.0 1.0 - 2^-15

short _Fract 16 -1.0 1.0 - 2^-15

signed _Fract 16 -1.0 1.0 - 2^-15

signed short _Fract 16 -1.0 1.0 - 2^-15

unsigned _Fract 16 0.0 1.0 - 2^-15

unsigned short _Fract 16 0.0 1.0 - 2^-15

long _Fract 32 -1.0 1.0 - 2^-31

signed long _Fract 32 -1.0 1.0 - 2^-31

unsigned long _Fract 32 0.0 1.0 - 2^-31

_Accum 40 -256.0 256.0 - 2^-31

short _Accum 40 -256.0 256.0 - 2^-31

long _Accum 40 -256.0 256.0 - 2^-31

signed _Accum 40 -256.0 256.0 - 2^-31

signed short _Accum 40 -256.0 256.0 - 2^-31

signed long _Accum 40 -256.0 256.0 - 2^-31

unsigned _Accum 40 0.0 256.0 - 2^-31

unsigned short _Accum 40 0.0 256.0 - 2^-31

unsigned long _Accum 40 0.0 256.0 - 2^-31

As with integer and floating point data types, all fixed-point values are represented in a little endian format, which
means:

• The Least Significant Byte (LSB) is stored at the lowest address
• The Least Significant bit (LSb) is stored at the lowest-numbered bit position

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 110

10.5 Structures and Unions
MPLAB XC16 C Compiler supports struct and union types. Structures and unions only differ in the memory offset
applied to each member.

These types will be at least 1 byte wide. Bit-fields are fully supported in structures.

Structures and unions may be passed freely as function arguments and function return values. Pointers to structures
and unions are fully supported.

Implementation-defined behavior of structures, unions and bit-fields is described in the 23.9. Structures, Unions,
Enumerations and Bit-Fields section.

10.5.1 Structure and Union Qualifiers
The MPLAB XC16 C Compiler supports the use of type qualifiers on structures. When a qualifier is applied to a
structure, all of its members will inherit this qualification. In the following example, the structure is qualified const.

 const struct foo {
 int number;
 int *ptr;
 } record = { 0x55, &i };

In this case, the entire structure may be placed into the program space where each member will be read-only.
Remember that all members are usually initialized if a structure is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const, but the structure was not, then the structure would
be positioned into RAM, but each member would be still be read-only. Compare the following structure with the one
above.

 struct {
 const int number;
 int * const ptr;
 } record = { 0x55, &i};

10.5.2 Bitfields in Structures
The MPLAB XC16 C Compiler fully supports bitfields in structures.

Bitfields are, by default, signed int. They may be made an unsigned int bitfield by using a command line
option (see the 7.6.3. Options for Controlling the C Dialect section).

The first bit defined will be the LSb of the word in which it will be stored.

The compiler supports bitfields with any bit size, up to the size of the underlying type. Any integral type can be made
into a bitfield. The allocation does not normally cross a bit boundary natural to the underlying type. For example:

 struct foo {
 long long i:40;
 int j:16;
 char k:8;
 } x;

 struct bar {
 long long I:40;
 char J:8;
 int K:16;
 } y;

struct foo will have a size of 10 bytes using the compiler. i will be allocated at bit offset 0 (through 39). There
will be 8 bits of padding before j, allocated at bit offset 48. If j were allocated at the next available bit offset (40),
it would cross a storage boundary for a 16 bit integer. k will be allocated after j, at bit offset 64. The structure will
contain 8 bits of padding at the end to maintain the required alignment in the case of an array. The alignment is 2
bytes because the largest alignment in the structure is 2 bytes.

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 111

struct bar will have a size of 8 bytes using the compiler. I will be allocated at bit offset 0 (through 39). There is no
need to pad before J because it will not cross a storage boundary for a char. J is allocated at bit offset 40. K can be
allocated starting at bit offset 48, completing the structure without wasting any space.

Unnamed bitfields may be declared to pad out unused space between active bits in control registers. For example:

 struct foo {
 unsigned int lo : 1;
 unsigned int : 6;
 unsigned int hi : 1;
 } x;

A structure with bitfields may be initialized by supplying a comma-separated list of initial values for each field. For
example:

 struct foo {
 unsigned int lo : 1;
 unsigned int mid : 6;
 unsigned int hi : 1;
 } x = {1, 8, 0};

Structures with unnamed bitfields may be initialized. No initial value should be supplied for the unnamed members,
for example:

 struct foo {
 unsigned int lo : 1;
 unsigned int : 6;
 unsigned int hi : 1;
 } x = {1, 0};

will initialize the members lo and hi correctly.

10.6 Pointer Types
There are two basic pointer types supported by the MPLAB XC16 C Compiler: data pointers and function pointers.
Data pointers hold the addresses of variables which can be indirectly read, and possibly indirectly written, by the
program. Function pointers hold the address of an executable function which can be called indirectly via the pointer.

10.6.1 Combining Type Qualifiers and Pointers
It is helpful to first review the ANSI C standard conventions for definitions of pointer types.

Pointers can be qualified like any other C object, but care must be taken when doing so as there are two quantities
associated with pointers. The first is the actual pointer itself, which is treated like any ordinary C variable and has

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 112

memory reserved for it. The second is the target, or targets, that the pointer references, or to which the pointer points.
The general form of a pointer definition looks like the following:

target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;
Any qualifiers to the right of the * (i.e., next to the pointer’s name) relate to the pointer variable itself. The type and
any qualifiers to the left of the * relate to the pointer’s targets. This makes sense since it is also the * operator that
dereferences a pointer, which allows you to get from the pointer variable to its current target.

Here are three examples of pointer definitions using the volatile qualifier. The fields in the definitions have been
highlighted with spacing:

volatile int * vip ;
int * volatile ivp ;
volatile int * volatile vivp ;

The first example is a pointer called vip. It contains the address of int objects that are qualified volatile. The
pointer itself – the variable that holds the address – is not volatile; however, the objects that are accessed when
the pointer is dereferenced are treated as being volatile. In other words, the target objects accessible via the
pointer may be externally modified.

The second example is a pointer called ivp which also contains the address of int objects. In this example, the
pointer itself is volatile, that is, the address the pointer contains may be externally modified; however, the objects
that can be accessed when dereferencing the pointer are not volatile.

The last example is of a pointer called vivp which is itself qualified volatile, and which also holds the address of
volatile objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for example, a pointer that is a
parameter to a function is assigned a new object address every time the function is called. The definition of the
pointer must be valid for every target address assigned.

Note:  Care must be taken when describing pointers. Is a “const pointer” a pointer that points to const objects, or
a pointer that is const itself? You can talk about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.

10.6.2 Data Pointers
All standard data pointers are 16 bits wide. This is sufficient to access the full data memory space.

These pointers are also able to access const-qualified objects, although in the program memory space, const-
qualified objects appear in a unique memory range in the data space using the PSV window. In this case, the -
mconst-in-data option should not be in force (see 7.6.1. Options Specific to 16-Bit Devices for more information.)

Pointers which access the managed PSV space are 32-bits wide. The extra space allows these pointers to access
any PSV page.

A set of special purpose, 32-bit data pointers are also available. See 12. Memory Allocation and Access for more
information.

10.6.3 Function Pointers
The MPLAB XC16 C Compiler fully supports pointers to functions, which allows functions to be called indirectly.
Function pointers are always 16 bits wide.

Because function pointers are only 16 bits wide, these pointers cannot point beyond the first 64K of Flash. If the
address of a function that is allocated beyond the first 64K of Flash is taken, the linker will arrange for a handle
section to be generated. The handle section will always be allocated within the first 64K. Each handle provides a
level of indirection which allows 16-bit pointers to access the full range of Flash. This operation may be disable with
the --no-handles linker option.

10.6.4 Special Pointer Targets
Pointers and integers are not interchangeable. Assigning an integer value to a pointer will generate a warning to this
effect. For example:

const char * cp = 0x123; // the compiler will flag this as bad code

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 113

There is no information in the integer, 0x123, relating to the type, size or memory location of the destination. Avoid
assigning an integer (whether it be a constant or variable) to a pointer at all times. Addresses assigned to pointers
should be derived from the address operator "&" that C provides.

In instances where you need to have a pointer reference a seemingly arbitrary address or address range, consider
defining an object or label at the desired location. If the object is defined in assembly code, use a C declaration (using
the extern keyword) to create a C object which links in with the external object and whose address can be taken.

Take care when comparing (subtracting) pointers. For example:

if(cp1 == cp2)
; take appropriate action
The ANSI C standard only allows pointer comparisons when the two pointer targets are the same object. The
address may extend to one element past the end of an array.

Comparisons of pointers to integer constants are even more risky, for example:

if(cp1 == 0x246)
; take appropriate action
A NULL pointer is the one instance where a constant value can be safely assigned to a pointer. A NULL pointer
is numerically equal to 0 (zero), but since they do not guarantee to point to any valid object and should not be
dereferenced, this is a special case imposed by the ANSI C standard. Comparisons with the macro NULL are also
allowed.

10.7 Literal Constant Types and Formats
A literal constant is used to represent a numerical value in the source code; for example, 123 is a constant. Like any
value, a literal constant must have a C type. In addition to a literal constant’s type, the actual value can be specified
in one of several formats. The format of integral literal constants specifies their radix. MPLAB XC16 supports the
ANSI standard radix specifiers as well as ones which enables binary constants to be specified in C code.

The formats used to specify the radices are given in the following table. The letters used to specify binary or
hexadecimal radices are case insensitive, as are the letters used to specify the hexadecimal digits.

Table 10-4. Radix formats

Radix Format Example

binary 0b number or 0B number 0b10011010

octal 0 number 0763

decimal number 129

hexadecimal 0x number or 0X number 0x2F

Any integral literal constant will have a type of int, long int or long long int, so that the type can hold the
value without overflow. Literal constants specified in octal or hexadecimal may also be assigned a type of unsigned
int, unsigned long int or unsigned long long int if the signed counterparts are too small to hold the
value.

The default types of literal constants may be changed by the addition of a suffix after the digits, e.g., 23U, where U
is the suffix. The table below shows the possible combination of suffixes, and the types that are considered when
assigning a type. So, for example, if the suffix l is specified and the value is a decimal literal constant, the compiler
will assign the type long int, if that type will hold the lineal constant; otherwise, it will assign long long int. If
the literal constant was specified as an octal or hexadecimal constant, then unsigned types are also considered.

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 114

Table 10-5. Suffixes and assigned types

Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int

Here is an example of code that may fail because the default type assigned to a literal constant is not appropriate:

unsigned long int result;
unsigned char shifter;

void main(void)
{
 shifter = 20;
 result = 1 << shifter;
 // code that uses result
}

The literal constant 1 will be assigned an int type; hence the result of the shift operation will be an int and the
upper bits of the long variable, result, can never be set, regardless of how much the literal constant is shifted. In
this case, the value 1 shifted left 20 bits will yield the result 0, not 0x100000.

The following uses a suffix to change the type of the literal constant, hence ensure the shift result has an unsigned
long type.

result = 1UL << shifter;
Floating-point literal constants have double type unless suffixed by f or F, in which case it is a float constant. The
suffixes l or L specify a long double type. In MPLAB XC16, the double type equates to a 32-bit float type. The
command line option, -fno-short-double, may be use to specify double as a 64-bit long double type.

Fixed-point literal constants look like floating point numbers, suffixed with combinations of [u][h,l]<r,k>. The suffix
u means unsigned. The suffixes h and l signify short and long respectively. The suffix r denotes a _Fract type and
k specifies an _Accum type. So for example, -1.0r is a signed _Fract and 0.5uhk is an unsigned short _Accum.

Character literal constants are enclosed by single quote characters, ’, for example ‘a’. A character literal constant
has int type, although this may be optimized to a char type later in the compilation.

Multi-byte character literal constants are supported by this implementation.

String constants, or string literals, are enclosed by double quote characters ", for example "hello world". The
type of string literal constants is const char * and the character that make up the string may be stored in the
program memory.

To comply with the ANSI C standard, the compiler does not support the extended character set in characters or
character arrays. Instead, they need to be escaped using the backslash character, as in the following example:

const char name[] = "Bj\xf8k";

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 115

printf("%s's Resum\xe9", name); \\ prints "Bjørk's Resumé"
Defining and initializing a non-const array (i.e., not a pointer definition) with a string, for example:

char ca[]= "two"; // "two" different to the above
is a special case and produces an array in data space which is initialized at startup with the string "two", whereas
a string literal constant used in other contexts represents an unnamed array, accessed directly from its storage
location.

The compiler will use the same storage location and label for strings that have identical character sequences, except
where the strings are used to initialize an array residing in the data space as shown in the last statement in the
previous example.

Two adjacent string literal constants (i.e., two strings separated only by white space) are concatenated by the C
preprocessor. Thus:

const char * cp = "hello " "world"; will assign the pointer with the address of the string "hello
world."

10.8 Standard Type Qualifiers
Type qualifiers provide additional information regarding how an object may be used. The MPLAB XC16 compiler
supports both ANSI C qualifiers and additional special qualifiers which are useful for embedded applications and
which take advantage of the PIC MCU and dsPIC DSC architectures.

10.8.1 Const Type Qualifier
The compiler supports the use of the ANSI type qualifiers const and volatile.

The const type qualifier is used to tell the compiler that an object is read only and will not be modified. If any attempt
is made to modify an object declared const, the compiler will issue a warning or error.

User-defined objects declared const are placed, by default, in the program space and may be accessed via the
program visibility space (see the 12.3. Variables in Program Space section). Usually a const object must be
initialized when it is declared, as it cannot be assigned a value at any point at runtime. For example:

const int version = 3;
will define version as being an int variable that will be placed in the program memory, will always contain the
value 3, and which can never be modified by the program.

The memory model -mconst-in-data will allocate const-qualified objects in data space, which may be writable.

10.8.2 Volatile Type Qualifier
The volatile type qualifier is used to tell the compiler that an object cannot be guaranteed to retain its value
between successive accesses. This prevents the optimizer from eliminating apparently redundant references to
objects declared volatile because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as volatile, and any variables
which may be modified by interrupt routines should use this qualifier as well. For example:

extern volatile unsigned int INTCON1 __attribute__((__sfr__));
The code produced by the compiler to access volatile objects may be different to that to access ordinary
variables, and typically the code will be longer and slower for volatile objects, so only use this qualifier if it is
necessary. Failure to use this qualifier when it is required, may lead to code failure.

Another use of the volatile keyword is to prevent variables being removed if they are not used in the C source. If
a non-volatile variable is never used, or used in a way that has no effect on the program’s function, then it may be
removed before code is generated by the compiler.

A C statement that consists only of a volatile variable’s name will produce code that reads the variable’s memory
location and discards the result. For example the entire statement:

PORTB;

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 116

will produce assembly code the reads PORTB, but does nothing with this value. This is useful for some peripheral
registers that require reading to reset the state of interrupt flags. Normally such a statement is not encoded as it has
no effect.

Some variables are treated as being volatile even though they may not be qualified in the source code. See
18. Mixing C and Assembly Code if you have assembly code in your project.

10.9 Compiler-Specific Type Qualifiers
The MPLAB XC16 C Compiler supports special type qualifiers, all of which allow the user to control how variables are
accessed.

10.9.1 __psv__ Type Qualifier
The __psv__ qualifier can be applied to variables or pointer targets that have been allocated to the program memory
space. It indicates how the variable or pointer targets will be accessed/read. Allocation of variables to the program
memory space is a separate process and is made using the space attribute, so this qualifier is often used in
conjunction with that attribute when the variable is defined. For example:

__psv__ unsigned int __attribute__((space(psv))) myPSVvar = 0x1234;
__psv__ char * myPSVpointer;
The pointer in this example does not use the space attribute as it is located in data memory, but the qualifier
indicates how the pointer targets are to be accessed. For more information on the space attribute and how to
allocate variables to the Flash memory, see the 10.10. Variable Attributes section. For basic information on the
memory layout and how program memory is accessed by the device, see the 12.1. Address Spaces section.

When variables qualified as __psv__ are read, the compiler will manage the selection of the program memory page
visible in the data memory window. This means that you do not need to adjust the PSVPAG SFR explicitly in your
source code, but the generated code may be slightly less efficient than that produced if this window was managed by
hand.

The compiler will assume that any object or pointer target qualified with __psv__ will wholly fit within a single PSV
page. Such is the case for objects allocated memory using the psv or auto_psv space attribute. If this is not
the case, then you should use the __prog__ qualifier (see the 10.9.2. __prog__ Type Qualifier section) and an
appropriate space attribute.

10.9.2 __prog__ Type Qualifier
The __prog__ qualifier is similar to the __psv__ qualifier (see 10.9.1. __psv__ Type Qualifier), but indicates to the
compiler that the qualified variable or pointer target may straddle PSV pages. As a result, the compiler will generate
code so these qualified objects can be read correctly, regardless of which page they are allocated to. This code may
be longer than that to access variables or pointer targets which are qualified __psv__. For example:

__prog__ unsigned int __attribute__((space(prog))) myPROGvar = 0x1234;
__prog__ char * myPROGpointer;
The pointer in this example does not use the space attribute as it is located in data memory, but the qualifier
indicates how the pointer targets are to be accessed. For more information on the space attribute and how
to allocate variables to the Flash memory, see 10.10. Variable Attributes and 12.1. Address Spaces for basic
information on the memory layout and how program memory is accessed by the device.

10.9.3 __eds__ Type Qualifier
The __eds__ qualifier indicates that the qualified object has been located in an EDS accessible memory space and
that the compiler should manage the appropriate registers used to access this memory.

When used with pointers, it implies that the compiler should make few assumptions as to the memory space in
which the pointer target is located and that the target may be in one of several memory spaces, which include:
space(data) (and its subsets), eds, space(eedata), space(prog), space(psv), space(auto_psv), and on
some devices space(pmp). Not all devices support all memory spaces. For example:

__eds__ unsigned int __attribute__((eds)) myEDSvar;

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 117

__eds__ char * myEDSpointer;
The compiler will automatically assert the page attribute to scalar variable declarations; this allows the compiler to
generate more efficient code when accessing larger data types. Remember, scalar variables do not include structures
or arrays. To force paging of a structure or array, please manually use the page attribute and the compiler will
prevent the object from crossing a page boundary.

For read access to __eds__ qualified variables will automatically manipulate the PSVPAG or DSRPAG register (as
appropriate). For devices that support extended data space memory, the compiler will also manipulate the DSWPAG
register.

Note:  Some devices use DSRPAG to represent extended read access to Flash or the extended data space (EDS).

For more on this qualifier, see the 12.6. Extended Data Space Access section.

10.9.4 __pack_upper_byte Type Qualifier
This qualifier allows the use of the upper byte of Flash memory for data storage. For 16-bit devices, a 24-bit word is
used in Flash memory. The architecture supports the mapping of areas of Flash into the data space, but this mapping
is only 16 bits wide to fit in with data space dimensions, unless the __pack_upper_byte qualifier is used.

For more information on this qualifier, see the 12.9. Packing Data Stored in Flashsection.

10.9.5 __pmp__ Type Qualifier
This qualifier may be used with those devices that contain a Parallel Master Port (PMP) peripheral, which allows
the connection of various memory and non-memory devices directly to the device. When variables or pointer targets
qualified with __pmp__ are accessed, the compiler will generate the appropriate sequence for accessing these
objects via the PMP peripheral on the device. For example:

__pmp__ int auxDevice
 __attribute__((space(pmp(external_PMP_memory))));
__pmp__ char * myPMPpointer;

In addition to the qualifier, the int variable uses a memory space which would need to be predefined. The pointer in
this example does not use the space attribute as the it is located in data memory, but the qualifier indicates how the
pointer targets are to be accessed. For more information on the space attribute, see the 10.10. Variable Attributes
section. For basic information on the memory layout and how program memory is accessed by the device, see the
12.1. Address Spaces section.

For more on the qualifier, see the 12.4. Parallel Master Port Access section.

10.9.6 __external__ Type Qualifier
This qualifier is used to indicate that the compiler should access variables or pointer targets which have been
located in external memory. These memories include any that have been attached to the device, but which are not,
or cannot, be accessed using the parallel master port (PMP) peripheral (see the 10.9.5. __pmp__ Type Qualifier
section). Access of objects in external memory is similar to that for PMP access, but the routines that do so are fully
configurable and, indeed, need to be defined before any access can take place. See the 12.5. External Memory
Access section for more information on how the memory space is configured and access routines are defined.

The qualifier is used as in the following example.

__external__ int external_array[256]
 __attribute__((space(external(external_memory))));
__external__ char * myExternalPointer;

In addition to the qualifier, the array uses a memory space which would need to be predefined. The pointer in
this example does not use the space attribute as it is located in data memory, but the qualifier indicates how the
pointer targets are to be accessed. For more information on the space attribute, see the 10.10. Variable Attributes
section. For basic information on the memory layout and how program memory is accessed by the device, see the
12.1. Address Spaces section.

For more on the qualifier, see the 12.5. External Memory Accesssection.

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 118

10.10 Variable Attributes
The MPLAB XC16 C Compiler uses attributes to indicate memory allocation, type and other configuration for
variables, structure members and types. Other attributes are available for functions, and these are described in the
15.1.2. Function Attributes section. Qualifiers are used independently to attributes (see the 10.9. Compiler-Specific
Type Qualifiers section). They only indicate how objects are accessed, but must be used where necessary to ensure
correct code operation.

The compiler keyword __attribute__ allows you to specify the attributes of objects. This keyword is followed by
an attribute specification inside double parentheses. The attributes below are currently supported for variables.

You may also specify attributes with __ (double underscore) preceding and following each keyword (e.g.,
__aligned__ instead of aligned). This allows you to use them in header files without being concerned about
a possible macro of the same name.

To specify multiple attributes, separate them by commas within the double parentheses, for example:

__attribute__ ((aligned (16), packed)).
Note:  It is important to use variable attributes consistently throughout a project. For example, if a variable is defined
in file A with the far attribute and declared extern in file B without far, then a link error may result.

address (addr)
The address attribute specifies an absolute address for the variable. This attribute can be used in conjunction with a
section attribute. This can be used to start a group of variables at a specific address:

int foo __attribute__((section("mysection"),address(0x900)));
int bar __attribute__((section("mysection")));
int baz __attribute__((section("mysection")));

A variable with the address attribute cannot be placed into the auto_psv space (see the space() attribute or the
-mconst-in-code option); attempts to do so will cause a warning and the compiler will place the variable into the
PSV space. If the variable is to be placed into a PSV section, the address should be a program memory address.

aligned (alignment)
This attribute specifies a minimum alignment for the variable, measured in bytes. The alignment must be a power of
two. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;
causes the compiler to allocate the global variable x on a 16-byte boundary. On the dsPIC DSC device, this could be
used in conjunction with an asm expression to access DSP instructions and addressing modes that require aligned
operands.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a
given variable. Alternatively, you can leave out the alignment factor and just ask the compiler to align a variable to the
maximum useful alignment for the dsPIC DSC device. For example, you could write:

short array[3] __attribute__ ((aligned));
Whenever you leave out the alignment factor in an aligned attribute specification, the compiler automatically sets the
alignment for the declared variable to the largest alignment for any data type on the target machine – which in the
case of the dsPIC DSC device is two bytes (one word).

The aligned attribute can only increase the alignment; you can decrease it by specifying packed (see below). The
aligned attribute conflicts with the reverse attribute. It is an error condition to specify both.

The aligned attribute can be combined with the section attribute. This will allow the alignment to take place in a
named section. By default, when no section is specified, the compiler will generate a unique section for the variable.
This will provide the linker with the best opportunity for satisfying the alignment restriction without using internal
padding that may happen if other definitions appear within the same aligned section.

boot
This attribute can be used to define protected variables in Boot Segment (BS) RAM:

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 119

int __attribute__((boot)) boot_dat[16];
Variables defined in BS RAM will not be initialized on startup. Therefore all variables in BS RAM must be initialized
using inline code. A diagnostic will be reported if initial values are specified on a boot variable.

An example of initialization is as follows:

int __attribute__((boot)) time = 0; /* not supported */
int __attribute__((boot)) time2;
void __attribute__((boot)) foo()
{
 time2 = 55; /* initial value must be assigned explicitly */
}

deprecated
The deprecated attribute causes the declaration to which it is attached to be specially recognized by the compiler.
When a deprecated function or variable is used, the compiler will emit a warning.

A deprecated definition is still defined and therefore present in any object file. For example, compiling the following
file:

int __attribute__((__deprecated__)) i;
int main() {
 return i;
}

will produce the warning:

deprecated.c:4: warning: `i’ is deprecated (declared
at deprecated.c:1)
i is still defined in the resulting object file in the normal way.

eds
In the attribute context, the eds (extended data space) attribute indicates to the compiler that the variable will
be allocated anywhere within data memory. Variables with this attribute will likely also have the __eds__ type
qualifier (see the 12.6. Extended Data Space Access section) for the compiler to properly generate the correct
access sequence. Not that the __eds__ qualifier and the eds attribute are closely related, but not identical. On
some devices, eds may need to be specified when allocating variables into certain memory spaces such as space
(ymemory) or space (dma) as this memory may only exist in the extended data space.

fillupper
This attribute can be used to specify the upper byte of a variable stored into a space(prog) section.

For example:

int foo[26] __attribute__((space(prog),fillupper(0x23))) = { 0xDEAD };
will fill the upper bytes of array foo with 0x23, instead of 0x00. foo[0] will still be initialized to 0xDEAD.

The command line option -mfillupper=0x23 will perform the same function.

far
The far attribute tells the compiler that the variable will not necessarily be allocated in near (first 8 KB) data space,
(i.e., the variable can be located anywhere in data memory between 0x0000 and 0x7FFF).

mode (mode)
This attribute specifies the data type for the declaration as whichever type corresponds to the mode mode. This in
effect lets you request an integer or floating point type according to its width. Valid values for mode are as follows:

Mode Width Compiler Type

QI 8 bits char
HI 16 bits int

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 120

...........continued
Mode Width Compiler Type

SI 32 bits long
DI 64 bits long long
SF 32 bits float
DF 64 bits long double

This attribute is useful for writing code that is portable across all supported compiler targets. For example, the
following function adds two 32-bit signed integers and returns a 32-bit signed integer result:

typedef int __attribute__((__mode__(SI))) int32;
int32
add32(int32 a, int32 b)
 {
 return(a+b);
 }

You may also specify a mode of byte or __byte__ to indicate the mode corresponding to a one-byte integer, word
or __word__ for the mode of a one-word integer, and pointer or __pointer__ for the mode used to represent
pointers.

near
The near attribute tells the compiler that the variable is allocated in near data space (the first 8 KB of data
memory). Such variables can sometimes be accessed more efficiently than variables not allocated (or not known to
be allocated) in near data space.

int num __attribute__ ((near));
noload
The noload attribute indicates that space should be allocated for the variable, but that initial values should not be
loaded. This attribute could be useful if an application is designed to load a variable into memory at run time, such as
from a serial EEPROM.

int table1[50] __attribute__ ((noload)) = { 0 };
packed
The packed attribute specifies that a structure member should have the smallest possible alignment unless you
specify a larger value with the aligned attribute.

Here is a structure in which the member x is packed, so that it immediately follows a, with no padding for alignment:

struct foo
{
char a;
int x[2] __attribute__ ((packed));
};

Note:  The device architecture requires that words be aligned on even byte boundaries, so care must be taken when
using the packed attribute to avoid run-time addressing errors.

page
This attribute specifies that the object cannot exceed a page boundary. The page boundary applied depends upon
where the object is allocated. An object located in a psv space cannot cross a 32K boundary; an object located in
prog space cannot cross a 64K boundary.

unsigned int var[10] __attribute__ ((space(auto_psv)));
The space(auto_psv) or space(psv) attribute will use a single memory page by default.

__eds__ unsigned int var[10] __attribute__ ((eds, page));

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 121

When dealing with eds, please refer to 12.6. Extended Data Space Access for more information.

persistent
The persistent attribute specifies that the variable should not be initialized or cleared at startup. A variable with
the persistent attribute could be used to store state information that will remain valid after a device Reset.

int last_mode __attribute__ ((persistent));
Persistent data is not normally initialized by the C run-time. However, from a cold-restart, persistent data may not
have any meaningful value. This code example shows how to safely initialize such data:

#include <p24Fxxxx.h>

int last_mode __attribute__((persistent));

int main()
{
 if ((RCONbits.POR == 0) &&
 (RCONbits.BOR == 0)) {
 /* last_mode is valid */
 } else {
 /* initialize persistent data */
 last_mode = 0;
 }
}

This attribute can only be used in conjunction with a RAM resident object, i.e. not in FLASH.

preserved
The preserved attribute can be applied to a variable to indicate that this variable's value should be preserved
on a restart. A restart is a user-defined event which can be different from a cold or warm reset. Preserved
variables require information from a previously linked executable in order to function; please see the linker option
--preserved=.

priority(n)
The priority attribute can be applied to a variable to group initializations together. n must be between 1 and
65535, with 1 being the highest level. All initializations with the same priority are initialized before moving onto the
next priority level. Level 1 variables are initialized first and variables without a priority level are initialized last. The
attribute can also be applied to void functions (void result and argument types); in this case the function(s) for level
n will be executed immediately after all the initializations for level n are complete.

reverse (alignment)
The reverse attribute specifies a minimum alignment for the ending address of a variable, plus one. The alignment
is specified in bytes and must be a power of two. Reverse-aligned variables can be used for decrementing modulo
buffers in dsPIC DSC assembly language. This attribute could be useful if an application defines variables in C that
will be accessed from assembly language.

int buf1[128] __attribute__ ((reverse(256)));
The reverse attribute conflicts with the aligned and section attributes. An attempt to name a section for a
reverse-aligned variable will be ignored with a warning. It is an error condition to specify both reverse and aligned
for the same variable. A variable with the reverse attribute cannot be placed into the auto_psv space (see the
space() attribute or the -mconst-in-code option); attempts to do so will cause a warning and the compiler will
place the variable into the PSV space.

section ("section-name")
By default, the compiler places the objects it generates in sections such as .data and .bss. The section attribute
allows you to override this behavior by specifying that a variable (or function) lives in a particular section.

struct a { int i[32]; };
struct a buf __attribute__((section("userdata"))) = {{0}};
secure

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 122

This attribute can be used to define protected variables in Secure Segment (SS) RAM:

int __attribute__((secure)) secure_dat[16];
Variables defined in SS RAM will not be initialized on startup. Therefore all variables in SS RAM must be initialized
using inline code. A diagnostic will be reported if initial values are specified on a secure variable.

String literals can be assigned to secure variables using inline code, but they require extra processing by the
compiler. For example:

char *msg __attribute__((secure)) = "Hello!\n"; /* not supported */
char *msg2 __attribute__((secure));
void __attribute__((secure)) foo2()
{
 msg2 = "Goodbye..\n"; / value assigned explicitly */
}

In this case, storage must be allocated for the string literal in a memory space which is accessible to the enclosing
secure function. The compiler will allocate the string in a psv constant section designated for the secure segment.

sfr (address)
The sfr attribute tells the compiler that the variable is an SFR and may also specify the run-time address of the
variable, using the address parameter.

extern volatile int __attribute__ ((sfr(0x200)))u1mod;
The use of the extern specifier is required in order to not produce an error.

Note:  By convention, the sfr attribute is used only in processor header files. To define a general user variable at a
specific address use the address attribute in conjunction with near or far to specify the correct addressing mode.

shared
Used with co-resident applications. The variable may be used outside of the application. A data item will be initialized
at startup of any application in the co-resident set.

space (space)
Normally, the compiler allocates variables in general data space. The space attribute can be used to direct the
compiler to allocate a variable in specific memory spaces. Memory spaces are discussed further in 12.1. Address
Spaces The following arguments to the space attribute are accepted:

• data – Allocate the variable in general data space. Variables in general data space can be accessed using
ordinary C statements. This is the default allocation.

• dataflash – Allocate the variable in dataflash.
• xmemory - dsPIC30F, dsPIC33EP/F DSCs only – Allocate the variable in X data space. Variables in X

data space can be accessed using ordinary C statements. An example of xmemory space allocation is:

int x[32] __attribute__ ((space(xmemory)));

• ymemory - dsPIC30F, dsPIC33EP/F DSCs only – Allocate the variable in Y data space. Variables in Y
data space can be accessed using ordinary C statements. An example of ymemory space allocation is:

int y[32] __attribute__ ((space(ymemory)));

• prog – Allocate the variable in program space, in a section designated for executable code. Variables in
program space can not be accessed using ordinary C statements. They must be explicitly accessed by the
programmer, usually using table-access inline assembly instructions, the program space visibility window, or by
the methods described in 12.3.2. Access of Objects in Program Memory

• auto_psv
Allocate the variable in program space, in a compiler-managed section designated for automatic program
space visibility window access. Variables in auto_psv space can be read (but not written) using ordinary C
statements, and are subject to a maximum of 32K total space allocated. When specifying space(auto_psv),
it is not possible to assign a section name using the section attribute; any section name will be ignored with a
warning. A variable in the auto_psv space cannot be placed at a specific address or given a reverse alignment.

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 123

Note:  Variables placed in the auto_psv section are not loaded into data memory at startup. This attribute may
be useful for reducing RAM usage.

• dma - PIC24E/H MCUs, dsPIC33E/F DSCs only – Allocate the variable in DMA memory.
Variables in DMA memory can be accessed using ordinary C statements and by the DMA peripheral.
__builtin_dmaoffset() and __builtin_dmapage() can be used to find the correct offset for configuring
the DMA peripheral. See 28. Built-in Functions for details.
 #include <p24Hxxxx.h>
 unsigned int BufferA[8] __attribute__((space(dma)));
 unsigned int BufferB[8] __attribute__((space(dma)));

 int main()
 {
 DMA1STA = __builtin_dmaoffset(BufferA);
 DMA1STB = __builtin_dmaoffset(BufferB);
 /* ... */
 }

• psv – Allocate the variable in program space, in a section designated for program space visibility window
access. The linker will locate the section so that the entire variable can be accessed using a single setting of
the PSVPAG register. Variables in PSV space are not managed by the compiler and can not be accessed using
ordinary C statements. They must be explicitly accessed by the programmer, usually using table-access inline
assembly instructions, or using the program space visibility window.

• eedata - PIC24F, dsPIC30F/33F DSCs only – Allocate the variable in EEPROM Data (EEData) space.
Variables in EEData space can not be accessed using ordinary C statements. They must be explicitly accessed
by the programmer, usually using table-access inline assembly instructions, or using the program space visibility
window.

• pmp– Allocate the variable in off chip memory associated with the PMP peripheral. For complete details please
see the 12.4. Parallel Master Port Access section.

• external – Allocate the variable in a user defined memory space. For complete details please see
the12.5. External Memory Access section.

transparent_union
This attribute, attached to a function parameter which is a union, means that the corresponding argument may have
the type of any union member, but the argument is passed as if its type were that of the first union member. The
argument is passed to the function using the calling conventions of the first member of the transparent union, not the
calling conventions of the union itself. All members of the union must have the same machine representation; this is
necessary for this argument passing to work properly.

unordered
The unordered attribute indicates that the placement of this variable may move relative to other variables within the
current C source file.

const int __attribute__ ((unordered)) i;
unsupported(message)
This attribute will display a custom message when the object is used.

int foo __attribute__((unsupported("This object is unsupported"));
Access to foo will generate a warning message.

unused
This attribute, attached to a variable, means that the variable is meant to be possibly unused. The compiler will not
produce an unused variable warning for this variable.

update
The update attribute can be applied to a variable to indicate that this variable should be initialized on a restart. This is
particularly useful if -mpreserve-all or --preserve-all is being used.

weak

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 124

The weak attribute causes the declaration to be emitted as a weak symbol. A weak symbol may be superseded by
a global definition. When weak is applied to a reference to an external symbol, the symbol is not required for linking.
For example:

extern int __attribute__((__weak__)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still link but s will not be given an
address. The conditional verifies that s has been defined (and returns its value if it has). Otherwise ‘0’ is returned.
There are many uses for this feature, mostly to provide generic code that can link with an optional library.

The weak attribute may be applied to functions as well as variables:

extern int __attribute__((__weak__)) compress_data(void *buf);
int process(void *buf) {
 if (compress_data) {
 if (compress_data(buf) == -1) /* error */
 }
 /* process buf */
}

In the above code, the function compress_data will be used only if it is linked in from some other module. Deciding
whether or not to use the feature becomes a link-time decision, not a compile time decision.

The affect of the weak attribute on a definition is more complicated and requires multiple files to describe:

 /* weak1.c */
 int __attribute__((__weak__)) i;

 void foo() {
 i = 1;
 }

 /* weak2.c */
 int i;
 extern void foo(void);

 void bar() {
 i = 2;
 }

 main() {
 foo();
 bar();
 }

Here the definition in weak2.c of i causes the symbol to become a strong definition. No link error is emitted and
both i’s refer to the same storage location. Storage is allocated for weak1.c’s version of i, but this space is not
accessible.

There is no check to ensure that both versions of i have the same type; changing i in weak2.c to be of type
float will still allow a link, but the behavior of function foo will be unexpected. foo will write a value into the least
significant portion of our 32-bit float value. Conversely, changing the type of the weak definition of i in weak1.c
to type float may cause disastrous results. We will be writing a 32-bit floating point value into a 16-bit integer
allocation, overwriting any variable stored immediately after our i.

In the cases where only weak definitions exist, the linker will choose the storage of the first such definition. The
remaining definitions become inaccessible.

The behavior is identical, regardless of the type of the symbol; functions and variables behave in the same manner.

Supported Data Types and Variables

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 125

11. Fixed-Point Arithmetic Support
The MPLAB XC16 C compiler supports fixed-point arithmetic according to the N1169 draft of ISO/IEC TR 18037. The
ISO C99 technical report on Embedded C, can be accessed using the following link:

www.open-std.org/JTC1/SC22/WG14/www/projects#18037

This chapter describes the implementation-specific details of the types and operations supported by the compiler
under this draft standard.

11.1 Enabling Fixed-Point Arithmetic Support
Fixed-point arithmetic support is not enabled by default in the MPLAB XC16 C compiler; it must be explicitly enabled
by the -menable-fixed compiler switch, described in the 7.6. Driver Option Descriptions section.

11.2 Data Types
All 12 of the primary fixed-point types and their aliases, described in section 4.1 “Overview and principles of the
fixed-point data types” of N1169, are supported via three fixed point formats corresponding to the intrinsic hardware
capabilities of Microchip 16-bit devices.

Table 11-1. Fixed Point Formats - 16-bit Devices

Format Description

1.15 1 bit sign, 15 bits fraction

1.31 1 bit sign, 31 bits fraction

9.31 9 bit signed integer, 31 bits fraction

These formats represent the fixed-point C data types, shown below.

Table 11-2. Fixed Point Formats - C Data Types

Type Format

_Fract 1.15

short _Fract 1.15

signed _Fract 1.15

signed short _Fract 1.15

unsigned _Fract 1.15 (sign bit 0)

unsigned short _Fract 1.15 (sign bit 0)

long _Fract 1.31

signed long _Fract 1.31

unsigned long _Fract 1.31 (sign bit 0)

_Accum 9.31

short _Accum 9.31

long _Accum 9.31

signed _Accum 9.31

signed short _Accum 9.31

Fixed-Point Arithmetic Support

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 126

http://www.open-std.org/JTC1/SC22/WG14/www/projects#18037

...........continued
Type Format

signed long _Accum 9.31

unsigned _Accum 9.31 (sign bit 0)

unsigned short _Accum 9.31 (sign bit 0)

unsigned long _Accum 9.31 (sign bit 0)

The _Sat type specifier, indicating that the values are saturated, may be used with any type as described in N1169.

Unsigned types are represented identically to signed types, but negative numbers (sign bit 1) are not valid values in
the unsigned types. Signed types saturate at the most negative and positive numbers representable in the underlying
format. Unsigned types saturate at 0 and the most positive number representable in the format.

The default behavior of overflow on signed or unsigned types is not saturation (as defined by the pragmas described
in section 4.1.3 “Rounding and Overflow” of N1169). Therefore variables in signed or unsigned types that are not
declared as saturating with the _Sat specifier may receive invalid values when assigned the result of an expression
in which an overflow may occur (the results of non-saturating overflows are not defined.)

11.3 Rounding
Three rounding modes are supported, corresponding to the three rounding modes supported by the 16-bit device
fixed-point multiplication facilities.

Table 11-3. Rounding Modes

Mode Description

Truncation Truncate signed result - round toward -saturation

Conventional Round signed result to nearest, ties toward +saturation

Convergent Round signed result to nearest, ties to even

All operations on fixed point variables, whether intrinsically supported by the hardware or not, are performed
according to the prevailing rounding mode chosen. The rounding mode may be specified globally via the -menable-
fixed compiler switch, as described in the 7.6. Driver Option Descriptions section or on a function-by-function
basis, via the -round attribute, as described in 15.1.2. Function Attributes.

These modes are described in more detail in the “16-bit MCU and DSC Programmer’s Reference Manual”
(DS70157).

11.4 Division By Zero
The result of a division of a _Fract or _Accum typed value by zero is not defined, and may or may not result in an
arithmetic error trap. Regardless of the presence of the _Sat keyword, division by zero does NOT produce the most
negative or most positive saturation value for the result type.

11.5 External Definitions
The MPLAB XC16 C compiler provides an include file, stdfix.h, which provides constant, pragma, typedef, and
function definitions as described in section 7.18a of N1169.

Fixed point conversion specifiers for formatted I/O, as described in section 4.1.9 “Formatted I/O functions for fixed-
point arguments” of N1169, are not supported in the current MPLAB XC16 standard C libraries. Fixed-point variables
may be displayed via (s)printf by casting them to the appropriate floating point representation (double for
_Fract, long double for long _Fract and _Accum) and then displaying the value in that format. To scan a

Fixed-Point Arithmetic Support

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 127

fixed-point number via (s)scanf, first scan it as the appropriate double or long double floating point number
and then cast the value obtained to the desired fixed-point type.

The fixed point functions described in section 4.1.7 of N1169 are not provided in the current MPLAB XC16 standard
C libraries.

Fixed point constants, with suffixes of k (K) and r (R), as described in section 4.1.5 of N1169, are supported by the
MPLAB XC16 C compiler.

11.6 Mixing C and Assembly Language Code
The MPLAB XC16 C compiler generates fixed-point code that assumes that certain 16-bit device resources are
managed by the compiler's start-up and run-time code. Hand-written assembly code built into the same program
could interfere with the state of the CPU assumed by the code the compiler generates.

MPLAB XC16 programs may contain both fixed-point C and assembly language code that utilizes 16-bit device
intrinsic fixed-point capabilities directly, but in order for these two kinds of code to inter-operate safely, the compiler
must save certain dsPIC registers around calls to assembly language functions that may change their state. The
C compiler can be instructed to do so by providing prototypes for assembly language functions for which this is
necessary. These prototypes should specify the save(CORCON) attribute for the target assembly language function,
as described in the 15.1.2. Function Attributes section. Programs constructed in this manner will operate correctly, at
the expense of some state saves and restores around calls to the indicated assembly routines.

Fixed-Point Arithmetic Support

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 128

12. Memory Allocation and Access
There are two broad groups of RAM-based variables: auto/parameter variables, which are allocated to some form
of stack, and global/static variables, which are positioned freely throughout the data memory space. The memory
allocation of these two groups is discussed separately in the following sections.

12.1 Address Spaces
The 16-bit devices are a combination of traditional PIC® Microcontroller (MCU) features (peripherals, Harvard
architecture, RISC) and new DSP capabilities (dsPIC DSC devices). These devices have two distinct memory
regions:

• Program Memory - contains executable code and optionally constant data.
• Data Memory - contains external variables, static variables, the system stack and file registers. Data memory

consists of near data, which is memory in the first 8 KB of the data memory space and far data, which is in the
upper 56 KB of data memory space.

Although the program and data memory regions are distinctly separate, the dsPIC and PIC24 families of processors
contain hardware support for accessing data from within program Flash using a hardware feature that is commonly
called Program Space Visibility (PSV). More detail about how PSV works can be found in device data sheets or
Family Reference Manuals. See sections 12.2. Variables In Data Space Memory and 16.7.2. PSV Usage with
Interrupt Service Routines.

Briefly, the architecture allows the mapping of one 32K page of Flash into the upper 32K of the data address space
via the Special Function Register (SFR) PSVPAG. Devices that support Extended Data Space (EDS) map using the
DSRPAG register instead. It is also possible to map Flash and other areas, see section 12.6. Extended Data Space
Access.

By default the compiler only supports direct access to one single PSV page, referred to as the auto_psv space. In
this model, 16-bit data pointers can be used. However, on larger devices this can make it difficult to manage large
amounts of constant data stored in Flash.

The extensions presented here allow the definition of a variable as being a ‘managed’ PSV variable. This means that
the compiler will manipulate both the offset (within a PSV page) and the page itself. As a consequence, data pointers
must be 32 bits. The compiler will probably generate more instructions than the single PSV page model, but that is
the price being paid to buy more flexibility and shorter coding time to access larger amounts of data in Flash.

12.2 Variables In Data Space Memory
Most variables are ultimately positioned into the data space memory. The exceptions are non-auto variables which
are qualified as const and may be placed in the program memory space.

Due to the fundamentally different way in which auto variables and non-auto variables are allocated memory, they
are discussed separately. To use the C language terminology, these two groups of variables are those with ‘automatic
storage duration’ and those with ‘permanent storage duration’, respectively.

In terms of memory allocation, variables are allocated space based on whether it is an auto or not; hence the
grouping in the following sections.

12.2.1 Auto and Non-Auto Variables vs. Local and Global Variables
The terms “local” and “global” are commonly used to describe variables, but are not defined by the language
standard. The term “local variable” is often taken to mean a variable which has scope inside a function and “global
variable” is one which has scope throughout the entire program. However, the C language has three common
scopes: block, file (i.e., internal linkage) and program (i.e., external linkage). So using only two terms to describe
these can be confusing.

For example, a static variable defined outside a function has scope only in that file, so it is not globally accessible,
but it can be accessed by more than one function inside that file, so it is not local to any one function either.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 129

12.2.2 Non-Auto Variable Allocation and Access
Non-auto (static and external) variables have permanent storage duration and are located by the compiler into
the data space memory. The compiler will also allocate non-auto const-qualified variables (see 10.8.1. Const Type
Qualifier) into the data space memory if the constants-in-data memory model is selected; otherwise, they are located
in program memory.

12.2.2.1 Default Allocation of Non-auto Variables
The compiler considers several categories of static and external variables which all relate to the value which
the variable should contain at the time the program begins. That is, those that should be cleared at program startup
(uninitialized variables), those that should hold a non-zero value (initialized variables), and those that should not be
altered at all during program startup (persistent variables). Those objects qualified as const are usually assigned
an initial value since they are read-only. If they are not assigned an initial value, they are grouped with the other
uninitialized variables.

Data placed in RAM may be initialized at startup by copying initialized values from program memory.

12.2.2.2 Static Variables
All static variables have permanent storage duration, even those defined inside a function which are “local static”
variables. Local static variables only have scope in the function or block in which they are defined, but unlike auto
variables, their memory is reserved for the entire duration of the program. Thus they are allocated memory like other
non-auto variables. Static variables may be accessed by other functions via pointers since they have permanent
duration.

Variables which are static are guaranteed to retain their value between calls to a function, unless explicitly
modified via a pointer.

Variables which are static and which are initialized only have their initial value assigned once during the program’s
execution. Thus, they may be preferable over initialized auto objects which are assigned a value every time the
block in which they are defined begins execution. Any initialized static variables are initialized in the same way as
other non-auto initialized objects by the runtime startup code (see the 7.3.2. Startup and Initialization section).

12.2.2.3 Non-Auto Variable Size Limits
The compiler option -mlarge-arrays allows you to define and access arrays greater than or equal to 32K. You
must ensure that there is enough space to allocate such an array by nominating a memory space large enough to
contain such an object.

Using this option will have some effect on how code is generated as it effects the definition of the size_t type,
increasing it to an unsigned long int. If used as a global option, this will affect many operations used in indexing
(making the operation more complex). Using this option locally may effect how variables can be accessed. With these
considerations in mind, using large arrays require careful planning. This section discusses some techniques for its
use.

Two things occur when the -mlarge-arrays option is selected:

1. The compiler generates code in a different way for accessing arrays.
2. The compiler defines the size_t type to be unsigned long int.

Item 1 can have a negative effect on code size, if used throughout the whole program. It is possible to only compile a
single module with this option and have it work, but there are limitations which will be discussed shortly.

Item 2 affects the calling convention when external functions receive or return objects of type size_t. The compiler
provides libraries built to handle a larger size_t and these objects will be selected automatically by the linker
(provided they exist).

Mixing -mlarge-arrays and normal-sized arrays together is relatively straightforward and might be the best way
to make use of this feature. There are a few usage restrictions: functions defined in such a module should not
call external routines that use size_t, and functions defined in such a module should not receive size_t as a
parameter.

For example, one could define a large array and an accessor function which is then used by other code modules to
access the array. The benefit is that only one module needs to be compiled with -mlarge-array with the defect
that an accessor is required to access the array. This is useful in cases where compiling the whole program with
-mlarge-arrays will have negative effect on code size and speed.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 130

A code example for this would be:

file1.c

 /* to be compiled -mlarge-arrays */
 __prog__ int array1[48000] __attribute__((space(prog)));
 __prog__ int array2[48000] __attribute__((space(prog)));

 int access_large_array(__prog__ int *array, unsigned long index) {
 return array[index];
 }

file2.c

 /* to be compiled without -mlarge-arrays */
 extern __prog__ int array1[] __attribute__((space(prog)));
 extern __prog__ int array2[] __attribute__((space(prog)));

 extern int access_large_array(__prog__ int *array,
 unsigned long index);

 main() {
 fprintf(stderr,"Answer is: %d\n", access_large_array(array1,
 39543));
 fprintf(stderr,"Answer is: %d\n", access_large_array(array2,
 16));
 }

12.2.2.4 Changing Non-Auto Variable Allocation
The compiler arranges for data to be placed into sections, depending on the memory model used and whether or not
the data is initialized, as described in the 12.1. Address Spaces section. When modules are combined at link time,
the linker determines the starting addresses of the various sections based on their attributes.

Cases may arise when a specific variable must be located at a specific address, or within some range of addresses.
The easiest way to accomplish this is by using the address attribute, described in section9. Differences Between
MPLAB XC16 and ANSI C. For example, to locate variable Mabonga at address 0x1000 in data memory:

int __attribute__ ((address(0x1000))) Mabonga = 1;
A group of common variables may be allocated into a named section, complete with address specifications:

int __attribute__ ((section("mysection"), address(0x1234))), foo;

12.2.2.5 Data Memory Allocation Macros
Macros that may be used to allocate space in data memory are discussed below. There are two types: those that
require an argument and those that do not.

The following macros require an argument N that specifies alignment. N must be a power of two, with a minimum
value of 2.

#define _XBSS(N) __attribute__((space(xmemory), aligned(N)))
#define _XDATA(N) __attribute__((space(xmemory), aligned(N)))
#define _YBSS(N) __attribute__((space(ymemory), aligned(N)))
#define _YDATA(N) __attribute__((space(ymemory), aligned(N)))
#define _EEDATA(N) __attribute__((space(eedata), aligned(N)))

For example, to declare an uninitialized array in X memory that is aligned to a 32-byte address:

int _XBSS(32) xbuf[16];
To declare an initialized array in EEPROM Data (EEData) space without special alignment:

int _EEDATA(2) table1[] = {0, 1, 1, 2, 3, 5, 8, 13, 21};
The following macros do not require an argument. They can be used to locate a variable in persistent data memory or
in near data memory.

#define _PERSISTENT __attribute__((persistent))
#define _NEAR __attribute__((near))

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 131

For example, to declare two variables that retain their values across a device Reset:

int _PERSISTENT var1,var2;

12.2.3 Auto Variable Allocation and Access
This section discusses allocation of auto variables (those with automatic storage duration). This also includes
function parameter variables, which behave like auto variables, as well as temporary variables defined by the
compiler.

The auto (short for automatic) variables are the default type of local variable. Unless explicitly declared to be
static, a local variable will be made auto. The auto keyword may be used if desired.

auto variables, as their name suggests, automatically come into existence when a block is executed and then
disappear once the block exits. Since they are not in existence for the entire duration of the program, there is the
possibility to reclaim memory they use when the variables are not in existence and allocate it to other variables in the
program.

Typically such variables are stored on some sort of a data stack, which can easily allocate then deallocate memory
as required by each function. The stack is discussed in below in 12.2.3.1. Software Stack.

The the standard qualifiers: const and volatile may both be used with auto variables and these do not affect
how they are positioned in memory. This implies that a local const-qualified object is still an auto object and as
such, will be allocated memory on the stack, not in the program memory like with non-auto const objects.

12.2.3.1 Software Stack
The dsPIC DSC device dedicates register W15 for use as a software Stack Pointer. All processor stack operations,
including function calls, interrupts and exceptions, use the software stack. The stack grows upward, towards higher
memory addresses.

The dsPIC DSC device also supports stack overflow detection. If the Stack Pointer Limit register, SPLIM, is initialized,
the device will test for overflow on all stack operations. If an overflow should occur, the processor will initiate a stack
error exception. By default, this will result in a processor Reset. Applications may also install a stack error exception
handler by defining an interrupt function named _StackError. See 16. Interrupts for details.

The C run-time startup module initializes the Stack Pointer (W15) and the Stack Pointer Limit register during the
startup and initialization sequence. The initial values are normally provided by the linker, which allocates the largest
stack possible from unused data memory. The location of the stack is reported in the link map output file. Applications
can ensure that at least a minimum-sized stack is available with the --stack linker command-line option. See the
MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106) for details.

Alternatively, a stack of specific size may be allocated with a user-defined section from an assembly source file. In
the following example, 0x100 bytes of data memory are reserved for the stack:

.section *,data,stack

.space 0x100
The linker will allocate an appropriately sized section and initialize __SP_init and __SPLIM_init so that the
run-time startup code can properly initialize the stack. Note that since this is a normal assembly code, section
attributes such as address may be used to further define the stack. Please see the MPLAB® XC16 Assembler,
Linker and Utilities User’s Guide (DS50002106) for more information.

12.2.3.2 The C Stack Usage
The C compiler uses the software stack to:

• Allocate automatic variables
• Pass arguments to functions
• Save the processor status in interrupt functions
• Save function return address
• Store temporary results
• Save registers across function calls

The run-time stack grows upward from lower addresses to higher addresses. The compiler uses two working
registers to manage the stack:

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 132

• W15 – This is the Stack Pointer (SP). It points to the top of stack which is defined to be the first unused location
on the stack.

• W14 – This is the Frame Pointer (FP). It points to the current function’s frame. Each function, if required, creates
a new frame at the top of the stack from which automatic and temporary variables are allocated. The compiler
option -fomit-frame-pointer can be used to restrict the use of the FP.
Figure 12-1. Stack and Frame Pointers

The C run-time startup modules in libpic30-omf.a initialize the Stack Pointer W15 to point to the bottom of the
stack and initialize the Stack Pointer Limit register to point to the top of the stack. The stack grows up and if it should
grow beyond the value in the Stack Pointer Limit register, then a stack error trap will be taken. The user may initialize
the Stack Pointer Limit register to further restrict stack growth.

The following diagrams illustrate the steps involved in calling a function. Executing a CALL or RCALL instruction
pushes the return address onto the software stack.

Figure 12-2. CALL or RCALL

The called function (callee) can now allocate space for its local context.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 133

Figure 12-3. Callee Space Allocation

Any callee-saved registers that are used in the function are pushed.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 134

Figure 12-4. Push Callee-Saved Registers

12.2.3.3 Auto Variable Size Limits
If a program requires large objects that should not be accessible to the entire program, consider leaving them as local
objects, but using the static specifier. Such variables are still local to a function, but are no longer auto and are
allocated permanent storage which is not in the software stack.

The auto objects are subject to the similar constraints as non-auto objects in terms of maximum size, but they are
allocated to the software stack rather than fixed memory locations. 12.2.2. Non-Auto Variable Allocation and Access,
Non-Auto Variable Size Limits. which describes defining and using large arrays is also applicable to auto objects.

12.2.4 Changing Auto Variable Allocation
As auto variables are dynamically allocated space in the software stack, using the address attribute or other
mechanisms to have them allocated at a non-default location is not permitted.

12.3 Variables in Program Space
The 16-bit core families of processors contain hardware support for accessing data from within program Flash using
a hardware feature that is commonly called Program Space Visibility (PSV). More detail about how PSV works
can be found in device data sheets or Family Reference Manuals (see sections 12.3.1. Allocation and Access of
Program Memory Objects and 16.7.2. PSV Usage with Interrupt Service Routines).

The architecture allows the mapping of one 32K page of Flash into the upper 32K of the data address space via the
Special Function Register (SFR) PSVPAG or DSRPAG. By default, the compiler only supports direct access to one

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 135

single PSV page, referred to as the auto_psv space. In this model, 16-bit data pointers can be used. However, this
can make it difficult to manage large amounts of constant data stored in Flash on larger devices.

When the option -mconst-in-code is enabled, const-qualified variables that are not auto are placed in program
memory. Any auto variables qualified const are placed on the stack along with other auto variables.

Any const-qualified (auto or non-auto) variable will always be read-only and any attempt to write to these in your
source code will result in an error being issued by the compiler.

A const object is usually defined with initial values, as the program cannot write to these objects at runtime.
However this is not a requirement. An uninitialized const object is allocated space along with other uninitialized
RAM variables, but is still read-only. Here are examples of const object definitions.

const char IOtype = ’A’; // initialized const object
const char buffer[10]; // I reserve memory in RAM
See the 18. Mixing C and Assembly Code section for the equivalent assembly symbols that are used to represent
const-qualified variables in program memory.

12.3.1 Allocation and Access of Program Memory Objects
There are many objects that are allocated to program memory by the compiler. The following sections indicate those
objects and how they are allocated to their final memory location by the compiler and how they are accessed.

12.3.1.1 String and Const Objects
By default, the compiler will automatically arrange for strings and const-qualified initialized variables to be allocated
in the auto_psv section, which is mapped into the PSV window. Specify the -mconst-in-data option to direct the
compiler not to use the PSV window and these objects will be allocated along with other RAM-based variables.

In the default memory model, the PSV page is fixed to one page which is represented by the auto_psv memory
space. Accessing the single auto PSV page is efficient as no page manipulation is required. Additional Flash may be
accessed using the techniques introduced in section 12.3.2. Access of Objects in Program Memory, Managed PSV
Access.

12.3.1.2 Const-qualified Variables in Secure Flash
const-qualified variables with initializers can be supported in secure Flash segments using PSV constant sections
managed by the compiler. For example:

const int __attribute__((boot)) time_delay = 55;
If the const qualifier was omitted from the definition of time_delay, this statement would be rejected with an error
message. (Initialized variables in secure RAM are not supported).

Since the const qualifier has been specified, variable time_delay can be allocated in a PSV constant section
that is owned by the boot segment. It is also possible to specify the PSV constant section explicitly with the
space(auto_psv) attribute:

int __attribute__((boot,space(auto_psv))) bebop = 20;
Pointer variables initialized with string literals require special processing. For example:

char * const foo __attribute__((boot)) = "eek";
The compiler will recognize that string literal "eek" must be allocated in the same PSV constant section as pointer
variable foo.

Regardless of whether you have selected the constants-in-code or constants-in-data memory model, the compiler will
create and manage PSV constant sections as needed for secure segments. Support for user-managed PSV sections
is maintained through an object compatibility model explained below.

Upon entrance to a boot or secure function, PSVPAG will be set to the correct value. This value will be restored after
any external function call.

12.3.1.3 String Literals as Arguments
In addition to being used as initializers, string literals may also be used as function arguments. For example:

myputs(“Enter the Dragon code:\n”);

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 136

Here allocation of the string literal depends on the surrounding code. If the statement appears in a boot or secure
function, the literal will be allocated in a corresponding PSV constant section. Otherwise it will be placed in general
(non-secure) memory, according to the constants memory model.

Recall that data stored in a secure segment cannot be read by any other segment. For example, it is not possible
to call the standard C library function puts() with a string that has been allocated in a secure segment. Therefore
literals which appear as function arguments can only be passed to functions in the same security segment. This is
also true for objects referenced by pointers and arrays. Simple scalar types such as char, int, and float, which
are passed by value, may be passed to functions in different segments.

12.3.2 Access of Objects in Program Memory
Allocating objects to program memory and accessing them are considered as two separate issues. The compiler
requires that you qualify variables to indicate how they are accessed. You can choose to have the compiler manage
access of these objects, or do this yourself, which can be more efficient, but more complex.

Note that boot or secure interrupt service routines will use a different setting of the PSVPAG register for their
constant data.

12.3.2.1 Managed PSV Access
The compiler introduces several new qualifiers (or more specifically, CV-qualifiers). Like a const volatile
qualifier, the new qualifiers can be applied to objects or pointer targets. These qualifiers are:

• __psv__ for accessing objects that do not cross a PSV boundary, such as those allocated in
space(auto_psv) or space(psv)

• __prog__ for accessing objects that may cross a PSV boundary, specifically those allocated in space(prog),
but it may be applied to any object in Flash

• __eds__ for accessing objects that may be in Flash or the extended data space (for devices with > 32K of
RAM), see __eds__ in 12.6. Extended Data Space Access.

Typically there is no need to specify __psv__ or __prog__ for an object placed in space(auto_psv).

Defining a variable in a compiler managed Flash space is accomplished by:

__psv__ unsigned int Flash_variable __attribute__((space(psv)));
Reading from the variable now will cause the compiler to generate code that adjusts the appropriate PSV page SFR
as necessary to access the variable correctly. These qualifiers can equally decorate pointers:

__psv__ unsigned int *pFlash;
produces a pointer to something in PSV, which can be assigned to a managed PSV object in the normal way. For
example:

pFlash = &Flash_variable;

12.3.2.2 Object Compatibility Model
Since functions in secure segments set PSVPAG to their respective psv constant sections, a convention must be
established for managing multiple values of the PSVPAG register. In previous versions of the compiler, a single value
of PSVPAG was set during program startup if the default constants-in-code memory model was selected. The
compiler relied upon that preset value for accessing const variables and string literals, as well as any variables
specifically nominated with space(auto_psv).

MPLAB XC16 provides support for multiple values of PSVPAG. Variables declared with space(auto_psv) may
be combined with secure segment constant variables and/or managed psv variables in the same source file.
Precompiled objects that assume a single, pre-set value of PSVPAG are link-compatible with objects that define
secure segment psv constants or managed psv variables.

Even though PSVPAG is considered to be a compiler-managed resource, there is no change to the function calling
conventions.

12.3.2.3 ISR Considerations
A data access using managed PSV pointers is definitely not atomic, meaning it can take several instructions to
complete the access. Care should be taken if an access should not be interrupted.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 137

Furthermore an Interrupt Service Routine (ISR) never really knows what the current state of the PSVPAG register will
be. Unfortunately the compiler is not really in any position to determine whether or not this is important in all cases.

The compiler will make the simplifying assumption that the writer of the interrupt service routine will know whether or
not the automatic, compiler managed PSVPAG is required by the ISR. This is required to access any constant data
in the auto_psv space or any string literals or constants when the default -mconst-in-code option is selected.
When defining an interrupt service routine, it is best to specify whether or not it is necessary to assert the default
setting of the PSVPAG SFR.

This is achieved by adding a further attribute to the interrupt function definition:

• auto_psv - the compiler will set the PSVPAG register to the correct value for accessing the auto_psv space,
ensuring that it is restored when exiting the ISR

• no_auto_psv - the compiler will not set the PSVPAG register

For example:

 void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void) {
 IFS0bits.T1IF = 0;
 }

The choice is provided so that, if you are especially conscious of interrupt latency, you may select the best option.
Saving and setting the PSVPAG will consume approximately 3 cycles at the entry to the function and one further cycle
to restore the setting upon exit from the function.

12.3.3 Size Limitations of Program Memory Variables
Arrays of any type (including arrays of aggregate types) can be qualified const and placed in the program memory.
So too can structure and union aggregate types, see section 10.5. Structures and Unions. These objects can often
become large in size and may affect memory allocation.

For objects allocated in a compiler-managed PSV window (auto_psv space) the total memory available for
allocation is limited by the size of the PSV window itself. Thus, no single object can be larger than the size of
the PSV window and all such objects must not total larger than this window.

The variables allocated to program memory are subject to similar constraints as data space objects in terms of
maximum size, but they are allocated to the larger program space rather than data space memory. The12.2.2. Non-
Auto Variable Allocation and Access section, describes defining and using large arrays is also applicable to objects in
program space memory.

12.3.4 Changing Program Memory Variable Allocation
The variables allocated to program memory can, to some degree, be allocated to alternate memory locations.
12.2.2. Non-Auto Variable Allocation and Access, Changing Non-Auto Variable Allocation describes alternate
addresses and sections also applicable to objects in the program memory space. Note that you cannot use the
address attribute for objects that are in the auto_psv space.

The space attribute can be used to define variables that are positioned for use in the PSV window. To specify certain
variables for allocation in the compiler-managed PSV space, use attribute space(auto_psv). To allocate variables
for PSV access in a section not managed by the compiler, use attribute space(psv). For more information on these
attributes, see 9. Differences Between MPLAB XC16 and ANSI C.

For example, to place a variable in the auto_psv space, which will cause storage to be allocated in Flash in a
convenient way to be accessed by a single PSVPAG setting, specify:

unsigned int Flash_variable __attribute__((space(auto_psv)));
Other user spaces that relate to Flash are available:

• space(psv) - a PSV space that the compiler does not access automatically
• space(prog) - any location in Flash that the compiler does not access automatically

Note that both the psv and auto_psv spaces are appropriately blocked or aligned so that a single PSVPAG setting
is suitable for accessing the entire variable.

For more on PSV usage, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 138

12.4 Parallel Master Port Access
Some devices contain a Parallel Master Port (PMP) peripheral which allows the connection of various memory and
non-memory devices directly to the device. Access to the peripheral is controlled via a selection of peripherals. More
information about this peripheral can be found in your device Family Reference Manual (FRM) or data sheet.

Note:  PMP attributes are not supported on devices with EPMP. Use Extended Data Space (EDS) instead (see
the12.6. Extended Data Space Access section).

The peripheral can require a substantial amount of configuration, depending upon the type and brand of memory
device that is connected. This configuration is not done automatically by the compiler.

The extensions presented here allow the definition of a variable as PMP. This means that the compiler will
communicate with the PMP peripheral to access the variable.

To use this feature:

• 12.4.1. Initialize PMP - define the initialization function: void __init_PMP(void)
• 12.5.1. Declare a New Memory Space
• 12.4.3. Define Variables within PMP Space

12.4.1 Initialize PMP
The PMP peripheral requires initialization before any access can be properly processed. Consult the appropriate
documentation for the device you are interfacing to and the data sheet for 16-bit device you are using.

If PMP is used, the toolsuite will call void __init_PMP(void) during normal C run-time initialization. If a
customized initialization is being used, please ensure that this function is called.

This function should make the necessary settings in the PMMODE and PMCON SFRs. In particular:

• The peripheral should not be configured to generate interrupts:
PMMODEbits.IRQM = 0

• The peripheral should not be configured to generate increments:
PMMODEbits.INCM = 0
The compiler will modify this setting during run-time as needed.

• The peripheral should be initialized to 16-bit mode:
PMMODEbits.MODE16 = 1
The compiler will modify this setting during run-time as needed.

• The peripheral should be configured for one of the MASTER modes:
PMMODEbits.MODE = 2 or PMMODEbits.MODE = 3

• Set the wait-states PMMODEbits.WAITB, PMMODEbits.WAITM, and
PMMODEbits.WAITE as appropriate for the device being connected.

• The PMCON SFR should be configured as appropriate making sure that the chip select function bits
PMCONbits.CSF match the information communicated to the compiler when defining memory spaces.

A partial example might be:

 void __init_PMP(void) {
 PMMODEbits.IRQM = 0;
 PMMODEbits.INCM = 0;
 PMMODEbits.MODE16 = 1;
 PMMODEbits.MODE = 3;
 /* device specific configuration of PMMODE and PMCCON follows */
 }

12.4.2 Declare a New Memory Space
The compiler toolsuite requires information about each additional memory being attached via the PMP. In order for
the 16-bit device linker to be able to properly assign memory, information about the size of memory available and the
number of chip-selects needs to be provided.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 139

In 9. Differences Between MPLAB XC16 and ANSI C the new pmp memory space was introduced. This attribute
serves two purposes: declaring extended memory spaces and assigning C variable declarations to external memory
(this will be covered in the next subsection).

Declaring an extended memory requires providing the size of the memory. You may optionally assign the memory to
a particular chip-select pin; if none is assigned it will be assumed that chip-selects are not being used. These memory
declarations look like normal external C declarations:

extern int external_PMP_memory
__attribute__((space(pmp(size(1024),cs(0)))));
Above we defined an external memory of size 1024 bytes and there are no chip-selects. The compiler only supports
one PMP memory unless chip-selects are being used:

extern int PMP_bank1 __attribute__((space(pmp(size(1024),cs(1)))));
extern int PMP_bank2 __attribute__((space(pmp(size(2048),cs(2)))));
Above PMP_bank1 will be activated using chip-select pin 1 (address pin 14 will be asserted when accessing
variables in this bank). PMP_bank2 will be activated using chip-select pin 2 (address pin 15 will be asserted).

Note that when using chip-selects, the largest amount of memory is 16 Kbytes per bank. It is recommended that the
declaration appear in a common header file so that the declaration is available to all translation units.

12.4.3 Define Variables within PMP Space
The pmp space attribute is also used to assign individual variables to the space. This requires that the memory space
declaration to be present. Given the declarations in the previous subsection, the following variable declarations can
be made:

__pmp__ int external_array[256]
__attribute__((space(pmp(external_PMP_memory))));
external_array will be allocated in the previously declared memory external_PMP_memory. If there is only one
PMP memory, and chip-selects are not being used, it is possible to leave out the explicit reference to the memory.
It is good practice, however, to always make the memory explicit which would lead to code that is more easily
maintained.

Note that, like managed PSV pointers, we have qualified the variable with a new type qualifier __pmp__. When
attached to a variable or pointer it instructs the compiler to generate the correct sequence for access via the PMP
peripheral.

Now that a variable has been declared it may be accessed using normal C syntax. The compiler will generate code to
correctly communicate with the PMP peripheral.

12.5 External Memory Access
Not all of Microchip’s 16-bit devices have a parallel master port peripheral (see 12.4. Parallel Master Port Access),
and not all memories are suitable for attaching to the PMP (serial memories sold by Microchip, for example). The
toolsuite provides a more general interface to, what is known as, external memory, although, as will be seen, the
memory does not have to be external.

Like PMP access, the tool-chain needs to learn about external memories that are being attached. Unlike PMP
access, however, the compiler does not know how to access these memories. A mechanism is provided by which an
application can specify how such memories should be accessed.

Addresses of external objects are all 32 bits in size. The largest attachable memory is 64K (16 bits); the other 16
bits in the address is used to uniquely identify the memory. A total of 64K (16 bits) of these may be (theoretically)
attached.

To use this feature, work through the following sections.

12.5.1 Declare a New Memory Space
This is very similar to declaring a new memory space for PMP access.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 140

The 16-bit toolsuite requires information about each external memory. In order for 16-bit device linker to be able to
properly assign memory, information about the size of memory available and, optionally the origin of the memory,
needs to be provided.

In 9. Differences Between MPLAB XC16 and ANSI C the external memory space was introduced. This attribute
serves two purposes: declaring extended memory spaces and assigning C variable declarations to external memory
(this will be covered in the next subsection).

Declaring an extended memory requires providing the size of the memory. You may optionally specify an origin for
this memory; if none is specified 0x0000 will be assumed.

extern int external_memory
__attribute__((space(external(size(1024)))));
Above an external memory of size 1024 bytes is defined. This memory can be uniquely identified by its given name of
external_memory.

12.5.2 Define Variables Within an External Space
The external space attribute is also used to assign individual variables to the space. This requires that the memory
space declaration to be present. Given the declarations in the previous subsection, the following variable declarations
can be made:

__external__ int external_array[256]
__attribute__((space(external(external_memory))));
external_array will be allocated in the previous declared memory external_memory.

Note that, like managed PSV objects, we have qualified the variable with a new type qualifier __external__. When
attached to a variable or pointer target, it instructs the compiler to generate the correct sequence to access these
objects.

Once an external memory variable has been declared, it may be accessed using normal C syntax. The compiler
will generate code to access the variable via special helper functions that the programmer must define. These are
covered in the next subsection.

12.5.3 Define How to Access Memory Spaces
References to variables placed in external memories are controlled via the use of several helper functions. Up to
five functions may be defined for reading and five for writing. One of these functions is a generic routine and will
be called if any of the other four are not defined but are required. If none of the functions are defined, the compiler
will generate an error message. A brief example will be presented in the next subsection. Generally, defining the
individual functions will result in more efficient code generation.

Functions for Reading
read_external

void __read_external(unsigned int address,

 unsigned int memory_space,

 void *buffer,

 unsigned int len)

This function is a generic Read function and will be called if one of the next functions are required but not defined.
This function should perform the steps necessary to fill len bytes of memory in the buffer from the external
memory named memory_space starting at address address.

read_external8
unsigned char __read_external8(unsigned int address,
unsigned int memory_space)

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 141

Read 8 bits from external memory space memory_space starting from address address. The compiler would like to
call this function if trying to access an 8-bit sized object.

read_external16
unsigned int __read_external16(unsigned int address,

unsigned int memory_space)
Read 16 bits from external memory space memory_space starting from address address. The compiler would like
to call this function if trying to access an 16-bit sized object.

read_external32
unsigned long __read_external32(unsigned int address,

unsigned int memory_space)
Read 32 bits from external memory space memory_space starting from address address. The compiler would like
to call this function if trying to access a 32-bit sized object, such as a long or float type.

read_external64
unsigned long long __read_external64(unsigned int address,

unsigned int memory_space)
Read 64 bits from external memory space memory_space starting from address address. The compiler would like
to call this function if trying to access a 64-bit sized object, such as a long long or long double type.

Functions for Writing
write_external

void __write_external(unsigned int address,

 unsigned int memory_space,

 void *buffer,

 unsigned int len)

This function is a generic Write function and will be called if one of the next functions are required but not defined.
This function should perform the steps necessary to write len bytes of memory from the buffer to the external
memory named memory_space starting at address address.

write_external8

void __write_external8(unsigned int address,

 unsigned int memory_space,

 unsigned char data)

Write 8 bits of data to external memory space memory_space starting from address address. The compiler would
like to call this function if trying to write an 8-bit sized object.

write_external16

void __write_external16(unsigned int address,

 unsigned int memory_space,

 unsigned int data)

Write 16 bits of data to external memory space memory_space starting from address address. The compiler
would like to call this function if trying to write an 16-bit sized object.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 142

write_external32

void __write_external32(unsigned int address,

 unsigned int memory_space,

 unsigned long data)

Write 32 bits of data to external memory space memory_space starting from address address. The compiler
would like to call this function if trying to write a 32-bit sized object, such as a long or float type.

write_external64

void __write_external64(unsigned int address,

 unsigned int memory_space,

 unsigned long long data)

Write 64 bits of data to external memory space memory_space starting from address address. The compiler
would like to call this function if trying to write a 64-bit sized object, such as a long long or long double type.

12.5.4 An External Example
This example implements, using external memory, addressable bit memory. In this case each bit is stored in real data
memory, not off chip. The code defines an external memory of 512 units and map accesses using the appropriate
read and write function to one of 64 bytes in local data memory.

First the external memory is defined:

 extern unsigned int bit_memory
 __attribute__((space(external(size(512)))));

Next appropriate read and write functions are defined. These functions will make use of an array of memory that is
reserved in the normal way.

 static unsigned char real_bit_memory[64];
 unsigned char __read_external8(unsigned int address,
 unsigned int memory_space) {
 if (memory_space == bit_memory) {
 /* an address within our bit memory */
 unsigned int byte_offset, bit_offset;
 byte_offset = address / 8;
 bit_offset = address % 8;
 return (real_bit_memory[byte_offset] >> bit_offset) & 0x1;
 } else {
 fprintf(stderr,"I don't know how to access memory space: %d\n",
 memory_space);
 }
 return 0;
 }
 void __write_external8(unsigned int address,
 unsigned int memory_space,
 unsigned char data) {
 if (memory_space == bit_memory) {
 /* an address within our bit memory */
 unsigned int byte_offset, bit_offset;
 byte_offset = address / 8;
 bit_offset = address % 8;
 real_bit_memory[byte_offset] &= (~(1 << bit_offset));
 if (data & 0x1) real_bit_memory[byte_offset] |=
 (1 << bit_offset);
 } else {
 fprintf(stderr,"I don't know how to access memory space: %d\n",
 memory_space);
 }
 }

These functions work in a similar fashion:

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 143

• if accessing bit_memory, then
– determine the correct byte offset and bit offset
– read or write the appropriate place in the real_bit_memory

• otherwise access another memory (whose access is unknown)

With the two major pieces of the puzzle in place, generate some variables and accesses:

 __external__ unsigned char bits[NUMBER_OF_BITS]
 __attribute__((space(external(bit_memory))));
 // inside main
 __external__ unsigned char *bit;
 bit = bits;
 for (i = 0; i < 512; i++) {
 printf("%d ",*bit++);
 }

Apart from the __external__ CV-qualifiers, ordinary C statements can be used to define and access variables in
the external memory space.

12.6 Extended Data Space Access
Qualifying a variable or pointer target as being accessible through the extended data space window allows you to
easily access objects that have been placed in a variety of different memory spaces. These include: space(data)
(and its subsets), eds, space(eedata), space(prog), space(psv), space(auto_psv), and on some devices
space(pmp). Not all devices support all memory spaces.

To use this feature:

• declare an object in an appropriate memory space
• qualify the object with the __eds__ qualifier

For example:

 __eds__ int var_a __attribute__((space(prog)));
 __eds__ int var_b [10] __attribute__((eds));
 __eds__ int *var_c;
 __eds__ int *__eds__ var_d __attribute__((space(psv)));

var_a - declares an int in Flash that is automatically accessed

var_b - declares an array of ints, located in eds; the elements of the array are automatically accessed

var_c - declares a pointer to an int, where the destination may exist in any one of the memory spaces supported
by Extended Data Space pointers and will be automatically accessed upon dereference; the pointer itself must live in
a normal data space

var_d - declares a pointer to an int, where the destination may exist in any one of the memory spaces supported
by Extended Data Space pointers and will be automatically accessed upon dereference; the pointer value exists in
Flash and is also automatically accessed.

The compiler will automatically assert the page attribute to scalar variable declarations; this allows the compiler to
generate more efficient code when accessing larger data types. Remember, scalar variables do not include structures
or arrays. To force paging of a structure or array, please manually use the page attribute and the compiler will
prevent the object from crossing a page boundary.

For read access to __eds__ qualified variables, the compiler will automatically manipulate the PSVPAG or DSRPAG
register as appropriate. For devices that support extended data space memory, the compiler will also manipulate the
DSWPAG register.

Note:  Some devices use DSRPAG to represent extended read access to Flash or the extended data space (EDS).

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 144

12.7 Dataflash Memory Access
The language tool cannot generate access to this kind of memory as it can generate access to other on-board
memories. Please see your device data sheet or Family Reference Manual (FRM) for suggested access routines.

The compiler defines the following features to assist in defining and using dataflash memory that is available on
certain devices.

1. The tool defines a new memory space, space(dataflash), which may be applied as an attribute to any
variable.

2. The tool provides a new builtin to determine the address of a properly attributed dataflash variable:
int foo[5] __attribute__((space(dataflash))) = { 1,2,3,4,5 };
offset = __builtin_dataflashoffset(&foo);

12.8 Dual Partition Memory Access
The language tool chain supports a new option that directs the compiler and linker to target a single partition in a dual
partition device. This option will constrain the output text to be contained within one panel and is selectable from with
the MPLAB X IDE or from the command line using --partition n.

12.9 Packing Data Stored in Flash
The 16-bit core families use a 24-bit Flash word size. The architecture supports the mapping of areas of Flash into
the data space, as discussed in the 12.3. Variables in Program Space section. Unfortunately this mapping is only 16
bits wide to fit in with data space dimensions.

The compiler supports using the upper byte of Flash via packed storage. Use of this upper byte can offer a code-size
savings for large structures, but this is more expensive to access. The type-qualifier __pack_upper_byte added to
a declaration indicates that the variable should be placed into Flash memory and use the upper byte. Unlike other
qualifiers in use with MPLAB XC16 C Compiler, such as __psv__, this qualifier combines placement and access
control.

12.9.1 Packed Example
__pack_upper_byte char message[] = "Hello World!\n";
will allocate the message string into Flash memory in such a way that the upper byte of memory contains valid data.

There are no restrictions to the types of __pack_upper_byte data. The compiler will 'pack' structures as if
__attribute__((packed)) had also been specified. This further eliminates wasted space due to padding.

Like other extended type qualifiers, the __pack_upper_byte type qualifier enforces a unique addressing space
on the compiler; therefore, it is important to maintain this qualifier when passing values as parameters. Do not be
tempted to cast away the __pack_upper_byte qualifier – it won't work.

12.9.2 Usage Considerations
When using this qualifier, consider the following:

1. The following attributes are not compatible with __pack_upper_byte:

boot near reverse
dma noload xmemory
eedata psv, auto_psv ymemory
2. __pack_upper_byte data is best used for large data sets that do not need to be accessed frequently or that

do not have important access timing.
3. Sequential accesses to __pack_upper_byte data objects will improve access performance.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 145

4. A version of mempcy is defined in libpic30.h, and its prototype is:

void _memcpy_packed(void *dst, __pack_upper_byte void *src,

 unsigned int len);

5. The following style of declaration is invalid for packed memory:
__pack_upper_byte char *message = "Hello World!\n";

Here, message is a pointer to __pack_upper_byte space, but the string "Hello World!\n", is in normal
const data space, which is not compatible with __pack_upper_byte. There is no standard C way to specify
a different source address space for the literal string. Instead declare message as an object (such as an array
declaration in 12.9.1. Packed Example).

6. The TBLPAG SFR may be corrupted during access of a packed variable.

12.9.3 Addressing Information
The upper byte of Flash does not have a unique address, which is a requirement for C. Therefore, the compiler has
to invent one. The tool chain remaps Flash to linear addresses for all bytes starting with program address word 0.
This means that the real Flash address of a __pack_upper_byte variable will not be the address that is stored in a
pointer or symbol table. The Flash address can be determined by:

1. word offset = address div 3
2. program address offset = word offset * 2
3. byte offset = address mod 3

The byte to reference is located in Flash at program address offset.

The remapped addressing scheme for __pack_upper_byte objects prevents the compiler from accepting fixed
address requests.

12.10 Allocation of Variables to Registers
Note:  Using variables specified in compiler-allocated registers - fixed registers - is usually unnecessary and
occasionally dangerous. This feature is deprecated and not recommended.

You may specify a fixed register assignment for a particular C variable. It is not recommended that this be done.

12.11 Variables in EEPROM Data Space (Device Dependent)
The compiler provides some convenience macro definitions to allow placement of data into the device’s EEPROM
Data (EEData) area. This can be done quite simply:

int _EEDATA(2) user_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
user_data will be placed in the EEData space (space(eedata)) reserving 10 words with the given initial values.

The device provides two ways for programmers to access this area of memory. The first is via the program space
visibility window. The second is by using special machine instructions (TBLRDx).

12.11.1 Accessing EEData via User Managed PSV
The compiler normally manages the PSV window to access constants stored in program memory. If this is not the
case, the PSV window can be used to access EEData memory.

To use the PSV window:

• The psv page register must be set to the appropriate address for the program memory to be accessed. For
EEData this will be 0xFF, but it is best to use the __builtin_psvpage() function.

• In some devices, the PSV window should also be enabled by setting the PSV bit in the CORCON register. If this
bit is not set, uses of the PSV window will always read 0x0000.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 146

Example 12-1. EEData Access Via PSV

#include <xc.h>
int main(void) {
 PSVPAG = __builtin_psvpage(&user_data);
 CORCONbits.PSV = 1;

 /* ... */

 if (user_data[2]) ;/* do something */

 }

These steps need only be done once. Unless psv page is changed, variables in EEData space may be read by
referring to them as normal C variables, as shown in the example.

Note:  This access model is not compatible with the compiler-managed PSV (-mconst-in-code) model. You
should be careful to prevent conflict.

12.11.2 Accessing EEData Using TBLRDx Instructions
The TBLRDx instructions are not directly supported by the compiler, but they can be used via inline assembly or
compiler built-in functions. Like PSV accesses, a 23-bit address is formed from an SFR value and the address
encoded as part of the instruction. To access the same memory as given in the previous example, the following code
may be used:

To use the TBLRDx instructions:

• The TBLPAG register must be set to the appropriate address for the program memory to be accessed. For
EEData, this will be 0x7F, but it is best to use the __builtin_tblpage() function.

• The TBLRDx instruction can be accessed from an __asm__ statement or through one of the
__builtin_tblrd functions; refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for
information on this instruction.

Example 12-2. EEData Access Via Table Read

EEData Access Via Table Read
#include <xc.h>
#define eedata_read(src, offset, dest) { \
 register int eedata_addr; \
 register int eedata_val; \
 \
 eedata_addr = __builtin_tbloffset(&src)+offset; \
 eedata_val = __builtin_tblrdl(eedata_addr); \
 dest = eedata_val; \
 }
char user_data[] __attribute__((space(eedata))) = { /* values */ };
int main(void) {
 int value;
 TBLPAG = __builtin_tblpage(&user_data);
 eedata_read(user_data,2*sizeof(user_data[0]), value);
 if (value) ; /* do something */
 }

12.11.3 Accessing EEData Using Managed Access
On most device the EEData space is part of the program address space. Therefore EEData can be accessed
automatically using one of the managed access qualifiers __psv__ or __eds__.

Using Managed PSV Access

#include <xc.h>

__eds__ char user_data[] __attribute__((space(eedata))) = { /* values
*/ };

int main(void) {

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 147

 int value;

 value = user_data[0];
 if (value) ; /* do something */
}

12.11.4 Additional Sources of Information
Device Family Reference Manuals (FRMs) have an excellent discussion on using the Flash program memory and
EEPROM data memory provided. These manuals also have information on run-time programming of both types of
memory.

There are many library routines provided with the compiler. See the "16-Bit Language Tools Libraries Reference
Manual" (DS50001456) manual for more information.

12.12 Dynamic Memory Allocation
The C run-time heap is an uninitialized area of data memory that is used for dynamic memory allocation using the
standard C library dynamic memory management functions, calloc, malloc and realloc. If you do not use any of
these functions, then you do not need to allocate a heap. By default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the memory allocation functions,
or indirectly, by using a standard C library input/output function, then a heap must be created. A heap is created
by specifying its size on the linker command line, using the --heap linker command-line option. An example of
allocating a heap of 512 bytes using the command line is:

xc16-gcc -T pdevice.gld foo.c -Wl,--heap=512
The linker allocates the heap immediately below the stack.

You can use a standard C library input/output function to create open files (fopen). If you open files, then the heap
size must include 40 bytes for each file that is simultaneously open. If there is insufficient heap memory, then the
open function will return an error indicator. For each file that should be buffered, 4 bytes of heap space is required.
If there is insufficient heap memory for the buffer, then the file will be opened in unbuffered mode. The default buffer
can be modified with setvbuf or setbuf.

12.13 Co-Resident Applications
Co-resident applications are programs that share the same physical memory space on an MCU or DSC. These
applications are linked together in such a way that they can share the device memory resource.

See the “MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106), Section 10.15 “Co-resident
Application Linking,” for details.

12.14 Memory Models
The compiler supports several memory models. Command-line options are available for selecting the optimum
memory model for your application, based on the specific device that you are using and the type of memory usage.

Table 12-1. Memory Model Command-Line Options

Option Memory Definition Description

-msmall-data Up to 6 KB of data memory1.
The default is device dependent2.

Permits use of PIC18 like instructions for
accessing data memory.

-msmall-scalar Up to 6 KB of data memory1.
This is the default.

Permits use of PIC18 like instructions for
accessing scalars in data memory.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 148

...........continued
Option Memory Definition Description

-mlarge-data Greater than 6 KB of data
memory1. The default is device
dependent2.

Uses indirection for data references.

-msmall-code Up to 32 kWords of program memory.
This is the default.

Function pointers will not go through a jump
table. Function calls use RCALL instruction.

-mlarge-code Greater than 32 kWords of
program memory.

Function pointers might go through a jump
table. Function calls use CALL instruction.

-mconst-in-data Constants located in data
memory.

Values copied from program memory by
startup code.

-mconst-in-code Constants located in program memory.
This is the default.

Values are accessed via Program Space
Visibility (PSV) data window.

-mconst-in-auxflash Constants in auxiliary Flash. Values are accessed via Program Space
visibility window.

Notes: 
1. For most devices 6K of RAM is the near data space, but for some devices it is 4K of RAM.
2. For devices that have all of their data memory in the near space, the memory model is “small data” “small

scalar” so that all memory will be allocated in the near space.
For all other devices the default memory model is “large data” “small scalar”. This will have the effect of
allowing the tool chain to place aggregate objects, such as arrays and structure, into the far memory space.
This can be over-ridden by explicitly selecting “small data” in the compiler options.

The command-line options apply globally to the modules being compiled. Individual variables and functions can be
declared as near, far or in eds to better control the code generation. For information on setting individual variable
or function attributes, see 10.10. Variable Attributes and 15.1.1. Function Specifiers.

12.14.1 Near or Far Data
If variables are allocated in the near data space, the compiler is often able to generate better (more compact) code
than if the variables are not allocated in near data. If all variables for an application can fit within the 6 KB (or 4 KB)
of near data, then the compiler can be requested to place them there by using the default -msmall-data command
line option when compiling each module. If the amount of data consumed by scalar types (no arrays or structures)
totals less than 6 KB (or 4 KB), the default -msmall-scalar, combined with -mlarge-data, may be used. This
requests that the compiler arrange to have just the scalars for an application allocated in the near data space.

If neither of these global options is suitable, then the following alternatives are available.

1. It is possible to compile some modules of an application using the -mlarge-data or -mlarge-scalar
command-line options. In this case, only the variables used by those modules will be allocated in the far
data section. If this alternative is used, then care must be taken when using externally defined variables. If a
variable that is used by modules compiled using one of these options is defined externally, then the module in
which it is defined must also be compiled using the same option, or the variable declaration and definition must
be tagged with the far attribute.

2. If the command-line options -mlarge-data or -mlarge-scalar have been used, then an individual
variable may be excluded from the far data space by tagging it with the near attribute.

3. Instead of using command-line options, which have module scope, individual variables may be placed in the
far data section by tagging them with the far attribute.

The linker will produce an error message if all near variables for an application cannot fit in the 6 KB (or 4 KB) near
data space.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 149

12.14.2 Near or Far Code
Functions that are near (within a radius of 32 kWords of each other) may call each other more efficiently than those
which are not. If it is known that all functions in an application are near, then the default -msmall-code command
line option can be used when compiling each module to direct the compiler to use a more efficient form of the
function call.

If this default option is not suitable, then the following alternatives are available:

1. It is possible to compile some modules of an application using the -msmall-code command line option. In this
case, only function calls in those modules will use a more efficient form of the function call.

2. If the -msmall-code command-line option has been used, then the compiler may be directed to use the long
form of the function call for an individual function by tagging it with the far attribute.

3. Instead of using command-line options, which have module scope, the compiler may be directed to call
individual functions using the near (small) or far (large) code models by tagging their declarations with the
near or far attribute.

4. Group locally referent code together by using named sections or keep this code in common translation units.

The linker will produce an error message if the function declared to be near cannot be reached by one of its callers
using a more efficient form of the function call.

12.14.3 Default Memory Models
When a project is created, code and data models are set to ‘default’, meaning predetermined models based on the
device selected will be used. These models may not be the best suited for the application.

To determine what the device default values are, build the project and find in the memory usage report and the
generated link map file text specifying the default values.

Figure 12-5. Default Memory Models in the Memory Usage Report

Additionally the memory usage report and link map file will generate a note about using a small data memory model
if a large data memory model is specified but a small data memory model is sufficient. In this case, selecting a small
data model will reduce code size.

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 150

Figure 12-6. Note in the Memory Usage Report

Memory Allocation and Access

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 151

13. Operators and Statements
The MPLAB XC16 C Compiler supports all the ANSI operators. The exact results of some of these operators are
implementation defined and this behavior is fully documented in the 23. Implementation-Defined Behavior section.
The following sections illustrate code operations that are often misunderstood as well as additional operations that
the compiler is capable of performing.

13.1 Built-In Functions
Built-in functions give the C programmer access to assembler operators or machine instructions that are currently
only accessible using inline assembly, but are sufficiently useful that they are applicable to a broad range of
applications. Built-in functions are coded in C source files syntactically like function calls, but they are compiled
to assembly code that directly implements the function and usually do not involve function calls or library routines.

For more on built-in functions, see the 28. Built-in Functions section.

13.2 Integral Promotion
When there is more than one operand to an operator, they typically must be of exactly the same type. The compiler
will automatically convert the operands, if necessary, so they do have the same type. The conversion is to a “larger”
type so there is no loss of information; however, the change in type can cause different code behavior to what is
sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a larger type, even if both operands
to an operator have the same type. This conversion is called integral promotion and is part of Standard C behavior.
The compiler performs these integral promotions where required, and there are no options that can control or disable
this operation. If you are not aware that the type has changed, the results of some expressions are not what would
normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or unsigned varieties of char, short
int or bit-field types to either signed int or unsigned int. If the result of the conversion can be represented by
an signed int, then that is the destination type, otherwise the conversion is to unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and b are converted to signed
int via integral promotion before the subtraction takes place. The result of the subtraction with these data types is
-50 (which is less than 10) and hence the body of the if() statement is executed.

If the result of the subtraction is to be an unsigned quantity, then apply a cast. For example:

if((unsigned int)(a - b) < 10)
count++;
The comparison is then done using unsigned int, in this case, and the body of the if() would not be executed.

Another problem that frequently occurs is with the bitwise compliment operator, ~. This operator toggles each bit
within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
 count++;

If c contains the value 0x55, it is often assumed that ~c will produce 0xAA. However, the result is 0xFFAA. So, the
comparison in the above example would fail. The compiler may be able to issue a mismatched comparison error to
this effect in some circumstances. Again, a cast could be used to change this behavior.

Operators and Statements

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 152

The consequence of integral promotion as illustrated above is that operations are not performed with char-type
operands, but with int-type operands. However there are circumstances when the result of an operation is identical
regardless of whether the operands are of type char or int. In these cases, the compiler will not perform the
integral promotion so as to increase the code efficiency. Consider the following example.

unsigned char a, b, c;
a = b + c;
Strictly speaking, this statement requires that the values of b and c should be promoted to unsigned int, the
addition performed, the result of the addition cast to the type of a, and then the assignment can take place. Even
if the result of the unsigned int addition of the promoted values of b and c was different to the result of the
unsigned char addition of these values without promotion, after the unsigned int result was converted back to
unsigned char, the final result would be the same. If an 8-bit addition is more efficient than a 16-bit addition, the
compiler will encode the former.

If in the above example, the type of a was unsigned int, then integral promotion would have to be performed to
comply with the ANSI C standard.

Operators and Statements

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 153

14. Register Usage
Certain registers play import roles in the C runtime environment. Therefor creating code concerning these registers
requires knowledge about their use by the compiler.

14.1 Register Variables
Register variables use one or more working registers, as shown in the following table.

Table 14-1. Register Conventions

Variable Working Register

char, signed char, unsigned char W0-W13, and W14, if not used as a Frame Pointer

short, signed short, unsigned short W0-W13, and W14, if not used as a Frame Pointer

int, signed int, unsigned int W0-W13, and W14, if not used as a Frame Pointer

void * (or any pointer) W0-W13, and W14, if not used as a Frame Pointer

long, signed long, unsigned long A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

long long, signed long long,
unsigned long long

A quadruplet of contiguous registers, the first of which is
a register from the set {W0, W4, W8}. Successively higher-
numbered registers contain successively more significant bits.

float A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

double1. A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

long double A quadruplet of contiguous registers, the first of which is a
register from the set {W0, W4, W8}

structure 1 contiguous register per 2 bytes in the structure

_Fract
_Sat _Fract

W0-W13, and W14, if not used as a Frame Pointer

long _Fract
_Sat long _Fract

A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

_Accum
_Sat _Accum

Three contiguous registers where the first register starts in the
set {W0, W4, W8, W12}; W12 is included only if W14 is not used
as a frame pointer.

Note 1: double is equivalent to long double if -fno-short-double is used.

14.2 Changing Register Contents
The assembly generated from C source code by the compiler will use certain registers that are present on the 16-bit
device. Most importantly, the compiler assumes that nothing other than code it generates can alter the contents of
these registers. So if the assembly loads a register with a value and no subsequent code generation requires this
register, the compiler will assume that the contents of the register are still valid later in the output sequence.

The registers that are special and which are managed by the compiler are: W0-W15, RCOUNT, STATUS (SR),
PSVPAG and DSRPAG. If fixed point support is enabled, the compiler may allocate A and B, in which case the
compiler may adjust CORCON.

Register Usage

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 154

The state of these register must never be changed directly by C code, or by any assembly code in-line with C code.
The following example shows a C statement and in-line assembly that violates these rules and changes the ZERO bit
in the STATUS register.

#include <xc.h>
void badCode(void)
{
 asm (“mov #0, w8”);
 WREG9 = 0;
}

The compiler is unable to interpret the meaning of in-line assembly code that is encountered in C code. Nor does it
associate a variable mapped over an SFR to the actual register itself. Writing to an SFR register using either of these
two methods will not flag the register as having changed and may lead to code failure.

Register Usage

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 155

15. Functions
The compiler supports C code functions and handles assembly code functions, as discussed in this chapter.

15.1 Writing Functions
Implementation and special features associated with functions are discussed in the following sections.

15.1.1 Function Specifiers
The only specifier that has any effect on functions is static.

A function defined using the static specifier only affects the scope of the function, i.e., limits the places in the
source code where the function may be called. Functions that are static may only be directly called from code in
the file in which the function is defined. This specifier does not change the way the function is encoded.

15.1.2 Function Attributes
The keyword __attribute__ allows you to specify special attributes when making a declaration. This keyword is
followed by an attribute specification inside double parentheses. The following attributes are currently supported for
functions:

You may also specify attributes with __ (double underscore) preceding and following each keyword (e.g.,
__shadow__ instead of shadow). This allows you to use them in header files without being concerned about a
possible macro of the same name.

Multiple attributes may be specified in a declaration by separating them by commas within the double parentheses or
by immediately following an attribute declaration with another attribute declaration.

15.1.2.1 address (addr)
The address attribute specifies an absolute address for the function.

void __attribute__ ((address(0x100))) foo() {
...
}

Alternatively, you may define the address in the function prototype:

void foo() __attribute__ ((address(0x100)));

15.1.2.2 alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another symbol, which must be specified.

Use of this attribute results in an external reference to target, which must be resolved during the link phase.

15.1.2.3 auto_psv, no_auto_psv
The auto_psv attribute, when combined with the interrupt, boot or secure attribute, will cause the compiler
to generate additional code in the function prologue to set the psv page SFR to the correct value for accessing
space(auto_psv) (or constants in the constants-in-code memory model) variables.

Use this option when using 24-bit pointers and an interrupt may occur while the psv page has been modified and the
interrupt routine, or a function it calls, uses an auto_psv variable. Compare this with no_auto_psv.

The no_auto_psv attribute, when combined with the interrupt, boot or secure attribute, will cause the
compiler to not generate additional code for accessing space(auto_psv) (or constants in the constants-in-code
memory model) variables. Use this option if none of the conditions under auto_psv hold true.

If neither auto_psv nor no_auto_psv option is specified for an interrupt routine, the compiler will issue a warning
and assume auto_psv.

15.1.2.4 boot
This attribute directs the compiler to allocate a function in the boot segment of program Flash.

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 156

For example, to declare a protected function:

void __attribute__((boot)) func();
An optional argument can be used to specify a protected access entry point within the boot segment. The argument
may be a literal integer in the range 0 to 31 (except 16), or the word unused. Integer arguments correspond to 32
instruction slots in the segment access area, which occupies the lowest address range of each secure segment. The
value 16 is excluded because access entry 16 is reserved for the secure segment interrupt vector. The value unused
is used to specify a function for all of the unused slots in the access area.

Access entry points facilitate the creation of application segments from different vendors that are combined at run
time. They can be specified for external functions as well as locally defined functions.

For example:

/* an external function that we wish to call */
extern void __attribute__((boot(3))) boot_service3();
/* local function callable from other segments */
void __attribute__((secure(4))) secure_service4()
{
 boot_service3();
}

Note:  In order to allocate functions with the boot or secure attribute, memory for the boot and/or secure segment
must be reserved. This can be accomplished by setting configuration words in source code, or by specifying linker
command options. For more information, see Chapter 8.8, “Options that Specify CodeGuard Security Features,” in
the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
If attributes boot or secure are used, and memory is not reserved, then a link error will result.

To specify a secure interrupt handler, use the boot attribute in combination with the interrupt attribute:

void __attribute__((boot,interrupt)) boot_interrupts();
When an access entry point is specified for an external secure function, that function need not be included in the
project for a successful link. All references to that function will be resolved to a fixed location in Flash, depending on
the security model selected at link time.

When an access entry point is specified for a locally defined function, the linker will insert a branch instruction into
the secure segment access area. The exception is for access entry 16, which is represented as a vector (i.e, an
instruction address) rather than an instruction. The actual function definition will be located beyond the access area;
therefore the access area will contain a jump table through which control can be transferred from another security
segment to functions with defined entry points.

Automatic variables are owned by the enclosing function and do not need the boot attribute. They may be assigned
initial values, as shown:

void __attribute__((boot)) chuck_cookies()
{
 int hurl;
 int them = 55;
 char *where = "far";
 splat(where);
 /* ... */
}

Note that the initial value of where is based on a string literal which is allocated in the PSV constant
section .boot_const. The compiler will set the psv page SFR to the correct value upon entrance to the function. If
necessary, the compiler will also restore it after the call to splat().

The boot attribute may be combined with the auto_psv or no_auto_psv attribute. For details, see the section
auto_psv, no_auto_psv.

15.1.2.5 const
Many functions do not examine any values except their arguments, and have no effects except the return value. Such
a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator
would be. These functions should be declared with the attribute const. For example:

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 157

int square (int) __attribute__ ((const int));
says that the hypothetical function square is safe to call fewer times than the program states.

Note that a function that has pointer arguments and examines the data pointed to must not be declared const.
Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const
function to have a void return type.

15.1.2.6 context
The context attribute may be used to associate the current routine with an alternate register set. Typically this
is used with interrupt service routines to reduce the amount of context that must be preserved, which will improve
interrupt latency.

15.1.2.7 deprecated
See10.10. Variable Attributes for information on the deprecated attribute.

15.1.2.8 far
The far attribute tells the compiler that the function may be located too far away to use short call instruction.

15.1.2.9 format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf or strftime style arguments which should be
type-checked against a format string. For example, consider the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)
 __attribute__ ((format (printf, 2, 3)));

This causes the compiler to check the arguments in calls to my_printf for consistency with the printf style format
string argument my_format.

The parameter archetype determines how the format string is interpreted, and should be one of printf, scanf or
strftime. The parameter string-index specifies which argument is the format string argument (arguments are
numbered from the left, starting from 1), while first-to-check is the number of the first argument to check against
the format string. For functions where the arguments are not available to be checked (such as vprintf), specify the
third parameter as zero. In this case, the compiler only checks the format string for consistency.

In the previous example, the format string (my_format) is the second argument of the function my_print, and the
arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions that take format strings as arguments, so that
the compiler can check the calls to these functions for errors. The compiler always checks formats for the ANSI
library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and
vsprintf, whenever such warnings are requested (using -Wformat), so there is no need to modify the header file
stdio.h.

15.1.2.10 format_arg (string-index)
The format_arg attribute specifies that a function takes printf or scanf style arguments, modifies it (for
example, to translate it into another language), and passes it to a printf or scanf style function. For example,
consider the declaration:

extern char *
my_dgettext (char *my_domain, const char *my_format)
 __attribute__ ((format_arg (2)));

This causes the compiler to check the arguments in calls to my_dgettext, whose result is passed to a printf,
scanf or strftime type function for consistency with the printf style format string argument my_format.

The parameter string-index specifies which argument is the format string argument (starting from 1).

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 158

The format-arg attribute allows you to identify your own functions which modify format strings, so that the compiler
can check the calls to printf, scanf or strftime function, whose operands are a call to one of your own
functions.

interrupt [([save(list)] [, irq(irqid)]

[, altirq(altirqid)] [, preprologue(asm)])]

Use this option to indicate that the specified function is an interrupt handler. The compiler will generate function
prologue and epilogue sequences suitable for use in an interrupt handler when this attribute is present. The optional
parameter save specifies a list of variables to be saved and restored in the function prologue and epilogue,
respectively. The optional parameters irq and altirq specify interrupt vector table IDs to be used. The optional
parameter preprologue specifies assembly code that is to be emitted before the compiler-generated prologue
code. See 16. Interrupts for a full description, including examples.

When using the interrupt attribute, please specify either auto_psv or no_auto_psv. If none is specified a
warning will be produced and auto_psv will be assumed.

15.1.2.11 keep
The keep attribute will prevent the linker from removing the function with the ELF linker option --gc-sections,
even if it is unused.

in C:

void __attribute__((keep)) foo(void);
in Assembly:

 .section *,code,keep
 .global _foo
_foo:
 return

15.1.2.12 naked
The naked attribute will prevent the compiler from saving or restoring any registers. This attribute should be applied
with caution as failing to save or restore registers may cause issues. Consider using this attribute with noreturn for
safety - any attempt to return will cause a reset.

void __attribute__((naked)) func();

15.1.2.13 near
The near attribute tells the compiler that the function can be called using a more efficient form of the call instruction.

15.1.2.14 noload
The noload attribute indicates that space should be allocated for the function, but that the actual code should not be
loaded into memory. This attribute could be useful if an application is designed to load a function into memory at run
time, such as from a serial EEPROM.

void bar() __attribute__ ((noload)) {
...
}

15.1.2.15 noreturn
A few standard library functions, such as abort and exit, cannot return. The compiler knows this automatically. Some
programs define their own functions that never return. You can declare them noreturn to tell the compiler this fact. For
example:

void fatal (int i) __attribute__ ((noreturn));

void
fatal (int i)
{
 /* Print error message. */

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 159

 exit (1);
}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can then optimize without regard to
what would happen if fatal ever did return. This makes slightly better code. It also helps avoid spurious warnings of
uninitialized variables.

It does not make sense for a noreturn function to have a return type other than void.

A noreturn function will reset if it attempts to return.

15.1.2.16 optimize
Use the optimize attribute to specify different optimization options for various functions within a source file.
Arguments can be either numbers or strings. Numbers are assumed to be an optimization level. Strings that begin
with O are assumed to be an optimization option. This feature can be used, for example, to have frequently executed
functions compiled with more aggressive optimization options that produce faster and larger code, while other
functions can be called with less aggressive options.

This optimization setting overrides the file or project optimization setting.

int __attribute__((optimize("-O3"))) pandora (void)
{
 if (maya > axton) return 1;
 return 0;
}

15.1.2.17 priority(n)
The priority attribute can be applied to a variable to group initializations together. n must be between 1 and
65535, with 1 being the highest level. All initializations with the same priority are initialized before moving onto the
next priority level. Level 1 variables are initialized first and variables without a priority level are initialized last. The
attribute can also be applied to void functions (void result and argument types); in this case the function(s) for level
n will be executed immediately after all the initializations for level n are complete.

15.1.2.18 round(mode)
The round attribute controls the rounding mode of C language fixed-point support (_Fract, _Accum variable
types) dialect code (-menable-fixed command-line option) within a function. Specify mode as one of truncation,
conventional, or convergent. This attribute overrides the default rounding mode set by -menable-fixed for C language
code within the attributed function, but has no effect on functions that may be called by that function.

15.1.2.19 save(list)
Functions declared with the save(list) attribute will direct the compiler to save and restore the C variables
expressed in list.

15.1.2.20 section ("section-name")
Normally, the compiler places the code it generates in the .text section. Sometimes you need additional sections
or certain functions to appear in special sections. The section attribute specifies that a function lives in a particular
section. For example, consider the declaration:

extern void foobar (void) __attribute__ ((section (".libtext")));
This puts the function foobar in the .libtext section.

The linker will allocate the saved named section sequentially. This might allow you to ensure code is locally referent
to each other, even across modules. This can ensure that calls are near enough to each other for a more efficient call
instruction.

15.1.2.21 secure
This attribute directs the compiler to allocate a function in the secure segment of program Flash.

For example, to declare a protected function:

void __attribute__((secure)) func();
An optional argument can be used to specify a protected access entry point within the secure segment. The
argument may be a literal integer in the range 0 to 31 (except 16), or the word unused. Integer arguments

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 160

correspond to 32 instruction slots in the segment access area, which occupies the lowest address range of each
secure segment. The value 16 is excluded because access entry 16 is reserved for the secure segment interrupt
vector. The value unused is used to specify a function for all of the unused slots in the access area.

Access entry points facilitate the creation of application segments from different vendors that are combined at run
time. They can be specified for external functions as well as locally defined functions. For example:

/* an external function that we wish to call */
extern void __attribute__((boot(3))) boot_service3();
/* local function callable from other segments */
void __attribute__((secure(4))) secure_service4()
{
 boot_service3();
}

Note:  In order to allocate functions with the boot or secure attribute, memory for the boot and/or secure segment
must be reserved. This can be accomplished by setting configuration words in source code, or by specifying linker
command options. For more information, see Chapter 8.8, “Options that Specify CodeGuard Security Features,” in
the linker manual (DS51317).
If attributes boot or secure are used, and memory is not reserved, then a link error will result.

To specify a secure interrupt handler, use the secure attribute in combination with the interrupt attribute:

void __attribute__((secure,interrupt)) secure_interrupts();
When an access entry point is specified for an external secure function, that function need not be included in the
project for a successful link. All references to that function will be resolved to a fixed location in Flash, depending on
the security model selected at link time.

When an access entry point is specified for a locally defined function, the linker will insert a branch instruction into
the secure segment access area. The exception is for access entry 16, which is represented as a vector (i.e, an
instruction address) rather than an instruction. The actual function definition will be located beyond the access area;
therefore the access area will contain a jump table through which control can be transferred from another security
segment to functions with defined entry points.

Automatic variables are owned by the enclosing function and do not need the secure attribute. They may be
assigned initial values, as shown:

void __attribute__((secure)) chuck_cookies()
{
 int hurl;
 int them = 55;
 char *where = "far";
 splat(where);
 /* ... */
}

Note that the initial value of where is based on a string literal which is allocated in the PSV constant
section .secure_const. The compiler will set PSVPAG to the correct value upon entrance to the function. If
necessary, the compiler will also restore PSVPAG after the call to splat().

The secure attribute may be combined with the auto_psv or no_auto_psv attribute. For details, see the section
auto_psv, no_auto_psv.

15.1.2.22 shadow
The shadow attribute causes the compiler to use the shadow registers rather than the software stack for saving
registers. This attribute is usually used in conjunction with the interrupt attribute.

void __attribute__ ((interrupt, shadow)) _T1Interrupt (void);

15.1.2.23 shared
Used with co-resident applications. The function may be used outside of the application. A data item will be initialized
at startup of any application in the co-resident set.

15.1.2.24 unsupported("message")
This attribute will display a custom message when the object is used.

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 161

int foo __attribute__((unsupported("This object is unsupported"));
Access to foo will generate a warning message.

15.1.2.25 unused
This attribute, attached to a function, means that the function is meant to be possibly unused. The compiler will not
produce an unused function warning for this function.

15.1.2.26 user_init
The user_init attribute may be applied to any non-interrupt function with void parameter and return types.
Applying this attribute will cause default C start-up modules to call this function before the user main is executed.
There is no guarantee of ordering, so these functions cannot rely on other user_init functions having been
previously run; these functions will be called after PSV and data initialization. A user_init may still be called by the
executing program. For example:

 void __attribute__((user_init)) initialize_me(void) {
 // perform initalization sequence alpha alpha beta
 }

15.1.2.27 weak
See 10.10. Variable Attributes for information on the weak attribute.

15.2 Function Size Limits
For all devices, the code generated for a function may become larger than one page in size, limited only by the
available program memory. However, functions that yield code larger than a page may not be as efficient due to
longer call sequences to jump to and call destinations in other pages (see section 15.3. Allocation of Function Code
for more details).

15.3 Allocation of Function Code
Code associated with functions is always placed in the program memory of the target device. The compiler arranges
for code to be placed in the .text section (as described in 12.1. Address Spaces), depending on the memory
model used and whether or not the data is initialized. When modules are combined at link time, the linker determines
the starting addresses of the various sections based on their attributes.

15.4 Changing the Default Function Allocation
Cases may arise when a specific function must be located at a specific address, or within some range of addresses.
The easiest way to accomplish this is by using the address attribute, described in section 15.1.1. Function
Specifiers. For example, to locate function PrintString at address 0x8000 in program memory:

int __attribute__ ((address(0x8000))) PrintString (const char *s);
Another way to locate code is by placing the function into a user-defined section, and specifying the starting address
of that section in a custom linker script. This is done as follows:

1. Modify the code declaration in the C source to specify a user-defined section.
2. Add the user-defined section to a custom linker script file to specify the starting address of the section.

For example, to locate the function PrintString at address 0x8000 in program memory, first declare the function
as follows in the C source:

int __attribute__((__section__(".myTextSection")))
PrintString(const char *s);
The section attribute specifies that the function should be placed in a section named .myTextSection, rather
than the default .text section. It does not specify where the user-defined section is to be located. That must be

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 162

done in a custom linker script, as follows. Using the device-specific linker script as a base, add the following section
definition:

.myTextSection 0x8000 :
 {
 *(.myTextSection);
 } >program

This specifies that the output file should contain a section named .myTextSection starting at location 0x8000
and containing all input sections named .myTextSection. Since, in this example, there is a single function
PrintString in that section, then the function will be located at address 0x8000 in program memory.

15.5 Inline Functions
By declaring a function inline, you can direct the compiler to integrate that function’s code into the code for its
callers. This usually makes execution faster by eliminating the function-call overhead. In addition, if any of the actual
argument values are constant, their known values may permit simplifications at compile time, so that not all of the
inline function’s code needs to be included. The effect on code size is less predictable. Machine code may be larger
or smaller with inline functions, depending on the particular case.

Note:  Function inlining will only take place when the function’s definition is visible at the call site (not just the
prototype). In order to have a function inlined into more than one source file, the function definition may be placed
into a header file that is included by each of the source files.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
 (*a)++;
}

(If you are using the -traditional option or the -ansi option, write __inline__ instead of inline.) You can
also make all “simple enough” functions inline with the command-line option -finline-functions. The compiler
heuristically decides which functions are simple enough to be worth integrating in this way, based on an estimate of
the function’s size.

Note:  The inline keyword will only be recognized with -finline or optimizations enabled.

Certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: use of
varargs, use of alloca, use of variable-sized data, use of computed goto and use of nonlocal goto. Using the
command-line option -Winline will warn when a function marked inline could not be substituted, and will give the
reason for the failure.

In compiler syntax, the inline keyword does not affect the linkage of the function.

When a function is both inline and static, if all calls to the function are integrated into the caller and the
function’s address is never used, then the function’s own assembler code is never referenced. In this case, the
compiler does not actually output assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons (in particular, calls that precede
the function’s definition cannot be integrated and neither can recursive calls within the definition). If there is a
non-integrated call, then the function is compiled to assembler code as usual. The function must also be compiled
as usual if the program refers to its address, because that can’t be inlined. The compiler will only eliminate inline
functions if they are declared to be static and if the function definition precedes all uses of the function.

When an inline function is not static, then the compiler must assume that there may be calls from other source
files. Since a global symbol can be defined only once in any program, the function must not be defined in the other
source files, so the calls therein cannot be integrated. Therefore, a non-static inline function is always compiled on
its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used only for inlining. In no
case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an
external reference, as if you had only declared the function and had not defined it.

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 163

This combination of inline and extern has a similar effect to a macro. Put a function definition in a header file with
these keywords and put another copy of the definition (lacking inline and extern) in a library file. The definition in
the header file will cause most calls to the function to be inlined. If any uses of the function remain, they will refer to
the single copy in the library.

Inline, like regular, is a suggestion and may be ignored.

15.6 Memory Models
The compiler supports several memory models. Command-line options are available for selecting the optimum
memory model for your application, based on the specific device part that you are using and the type of memory
usage.

For details, see 15.6. Memory Models.

15.7 Function Call Conventions
When calling a function:

• Registers W0-W7 are caller saved. The calling function must preserve these values before the function call if
their value is required subsequently from the function call. The stack is a good place to preserve these values.

• Registers W8-W14 are callee saved. The function being called must save any of these registers it will modify.
• Registers W0-W4 are used for function return values.
• Registers W0-W7 are used for argument transmission.
• DSRPAG/PSVPAG should be preserved if the -mconst-in-code (auto_psv) memory model is being used.

Table 15-1. Registers Required

Data Type Number of Working Registers Required

char 1

int 1

short 1

pointer 1 (eds pointer requires 2)

long 2 (contiguous – aligned to even numbered register)

float 2 (contiguous – aligned to even numbered register)

double* 2 (contiguous – aligned to even numbered register)

long double 4 (contiguous – aligned to quad numbered register)

structure 1 register per 2 bytes in structure

_Fract 1

long _Fract 2 (contiguous – aligned to even numbered register)

_Accum 3 (contiguous – aligned to quad numbered register)

* double is equivalent to long double if -fno-short-double is used.

Parameters are placed in the first aligned contiguous register(s) that are available. The calling function must preserve
the parameters, if required. Structures do not have any alignment restrictions; a structure parameter will occupy
registers if there are enough registers to hold the entire structure. Function results are stored in consecutive registers,
beginning with W0.

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 164

15.7.1 Function Parameters
The first eight working registers (W0-W7) are used for function parameters. Parameters are allocated to registers in
left-to-right order, with the parameter being assigned to the first available register that is suitably aligned.

In the following example, all parameters are passed in registers, although not in the order that they appear in the
declaration. This format allows the compiler to make the most efficient use of the available parameter registers.

Example 15-1. Function Call Model

void
params0(short p0, long p1, int p2, char p3, float p4, void *p5)
{
 /*
 ** W0 p0
 ** W1 p2
 ** W3:W2 p1
 ** W4 p3
 ** W5 p5
 ** W7:W6 p4
 */
 ...
}

The next example demonstrates how structures are passed to functions. If the complete structure can fit in the
available registers, then the structure is passed via registers; otherwise the structure argument will be placed onto the
stack.

Example 15-2. Function Call Model, Passing Structures

typedef struct bar {
 int i;
 double d;
} bar;

void
params1(int i, bar b) {
 /*
 ** W0 i
 ** W1 b.i
 ** W5:W2 b.d
 */

}

Parameters corresponding to the ellipses (...) of a variable-length argument list are not allocated to registers. Any
parameter not allocated to registers is pushed onto the stack, in right-to-left order.

In the next example, the structure parameter cannot be placed in registers because it is too large. However, this does
not prevent the next parameter from using a register spot.

Example 15-3. Function Call Model, Stack Based Arguments

typedef struct bar {
 double d,e;
} bar;

void
params2(int i, bar b, int j) {
 /*
 ** W0 i
 ** stack b
 ** W1 j
 */
}

Accessing arguments that have been placed onto the stack depends upon whether or not a Frame Pointer has been
created. Generally the compiler will produce a Frame Pointer (unless told not to do so), as stack-based parameters

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 165

will be accessed via the Frame Pointer register (W14). In the preceding example, b will be accessed from W14-22.
The Frame Pointer offset of negative 22 has been calculated by removing 2 bytes for the previous FP, 4 bytes for the
return address, followed by 16 bytes for b.

When no Frame Pointer is used, the assembly programmer must know how much stack space has been used since
entry to the procedure. If no further stack space is used, the calculation is similar to the example above. b would be
accessed via W15-20; 4 bytes for the return address and 16 bytes to access the start of b.

15.7.2 Return Value
Function return values are returned in W0 for 8- or 16-bit scalars, W1:W0 for 32-bit scalars, and W3:W2:W1:W0 for
64-bit scalars. Aggregates are returned indirectly through W0, which is set up by the function caller to contain the
address of the aggregate value.

15.7.3 Preserving Registers Across Function Calls
The compiler arranges for registers W8-W15 to be preserved across ordinary function calls. Registers W0-W7
are available as scratch registers. For interrupt functions, the compiler arranges for all necessary registers to be
preserved, namely W0-W15 and RCOUNT.

Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 166

16. Interrupts
Interrupt processing is an important aspect of most microcontroller applications. Interrupts may be used to
synchronize software operations with events that occur in real time. When interrupts occur, the normal flow of
software execution is suspended and special functions are invoked to process the event. At the completion of
interrupt processing, previous context information is restored and normal execution resumes.

This chapter presents an overview of interrupt processing. The following items are discussed:

• 16.1. Interrupt Operation – An overview of how interrupts operate.
• 16.2. Writing an Interrupt Service Routine – You can designate one or more C functions as Interrupt Service

Routines (ISRs) to be invoked by the occurrence of an interrupt. For best performance in general, place lengthy
calculations or operations that require library calls in the main application. This strategy optimizes performance
and minimizes the possibility of losing information when interrupt events occur rapidly.

• 16.3. Specifying the Interrupt Vector – The 16-bit devices use interrupt vectors to transfer application control
when an interrupt occurs. An interrupt vector is a dedicated location in program memory that specifies the
address of an ISR. Applications must contain valid function addresses in these locations to use interrupts.

• 16.4. Interrupt Service Routine Context Saving – To handle returning from an interrupt to code in the same
conditional state as before the interrupt, context information from specific registers must be saved.

• 16.5. Nesting Interrupts – The time between when an interrupt is called and when the first ISR instruction is
executed is the latency of the interrupt.

• 16.6. Enabling/Disabling Interrupts – How interrupt priorities are determined. Enabling and disabling interrupt
sources occurs at two levels: globally and individually.

• 16.7. ISR Considerations– Sharing memory with mainline code, PSV usage with ISRs, and calling functions
within ISRs.

16.1 Interrupt Operation
The compiler incorporates features allowing interrupts to be fully handled from C code. Interrupt functions are often
called ISRs.

The 16-bit devices allow interrupts to be generated from many interrupt sources. Most sources have their own
dedicated interrupt vector collated in an interrupt vector table (IVT). Each vector consists of an address at which is
found the entry point of the interrupt service routine. Some of the interrupt table vector locations are for traps, which
are non-maskable interrupts which deal with erroneous operation of the device, such as an address error.

On some devices, an alternate interrupt vector table (AIVT) is provided, which allows independent interrupt vectors to
be specified. This table can be enabled when required, forcing ISR addresses to be read from the AIVT rather than
the IVT.

Interrupts have a priority associated with them. This can be independently adjusted for each interrupt source. When
more than interrupt with the same priority are pending at the same time, the intrinsic priority, or natural order priority,
of each source comes into play. The natural order priority is typically the same as the order of the interrupt vectors in
the IVT.

The compiler provides full support for interrupt processing in C or inline assembly code.

Interrupt code is the name given to any code that executes as a result of an interrupt occurring. Interrupt code
completes at the point where the corresponding return from interrupt instruction is executed.

This contrasts with main-line code which, for a freestanding application, is usually the main part of the program that
executes after Reset.

16.2 Writing an Interrupt Service Routine
Following the guidelines in this section, you can write all of your application code, including your interrupt service
routines, using only C language constructs.

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 167

All ISR code will be placed into a named section that starts with .isr. A function with a section attribute will
prepend .isr to the name given. Code compiled with -ffunction-sections will also prepend .isr to the
section name. For details, see section 7.6.6.2. The -ffunction-sections Option.

If you have created your own linker script file and that file is older than an MPLAB C30 v3.30 project, you will need
to modify your linker script as per the Readme_XC16.html file found in the docs subdirectory of the MPLAB XC16
install directory.

16.2.1 Guidelines for Writing ISRs
The following guidelines are suggested for writing ISRs:

• declare ISRs with no parameters and a void return type (mandatory)
• do not let ISRs be called by main line code (mandatory)
• do not let ISRs call other functions (recommended)

A 16-bit device ISR is like any other C function in that it can have local variables and access global variables.
However, an ISR needs to be declared with no parameters and no return value. This is necessary because the ISR,
in response to a hardware interrupt or trap, is invoked asynchronously to the mainline C program (that is, it is not
called in the normal way, so parameters and return values don’t apply).

ISRs should only be invoked through a hardware interrupt or trap and not from other C functions. An ISR uses the
return from interrupt (RETFIE) instruction to exit from the function rather than the normal RETURN instruction. Using a
RETFIE instruction out of context can corrupt processor resources, such as the Status register.

Finally, ISRs should avoid calling other functions. This is recommended because of latency issues. See
16.5. Nesting Interrupts for more information.

16.2.2 Syntax for Writing ISRs
To declare a C function as an interrupt handler, tag the function with the interrupt attribute (see the 15.1.2. Function
Attributes section for a description of the __attribute__ keyword).

The syntax of the interrupt attribute is:

__attribute__((interrupt [(
 [save(symbol-list)]
 [, irq(irqid)]
 [, altirq(altirqid)]
 [, preprologue(asm)]
)]
))

The interrupt attribute name and the parameter names may be written with a pair of underscore characters before
and after the name. Thus, interrupt and __interrupt__ are equivalent, as are save and __save__.

The optional save parameter names a list of one or more variables that are to be saved and restored on entry to and
exit from the ISR. The list of names is written inside parentheses, with the names separated by commas.

You should arrange to save global variables that may be modified in an ISR if you do not want the value to be
exported. Global variables accessed by an ISR should be qualified volatile.

The optional irq parameter allows you to place an interrupt vector at a specific interrupt, with the optional altirq
parameter allowing you to place an interrupt vector at a specified alternate interrupt. Each parameter requires a
parenthesized interrupt ID number (see the 16.3. Specifying the Interrupt Vector section for a list of interrupt IDs).

The optional preprologue parameter allows you to insert assembly-language statements into the generated code
immediately before the compiler-generated function prologue.

When using the interrupt attribute, please specify either auto_psv or
no_auto_psv. If none is specified a warning will be produced and auto_psv will be assumed.

16.2.3 Coding ISRs
The following prototype declares function isr0 to be an interrupt handler:

void __attribute__((interrupt(auto_psv))) isr0(void);

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 168

As this prototype indicates, interrupt functions must not take parameters nor may they return a value. The compiler
arranges for all working registers to be preserved, as well as the Status register and the Repeat Count register, if
necessary. Other variables may be saved by naming them as parameters of the interrupt attribute. For example,
to have the compiler automatically save and restore the variables, var1 and var2, use the following prototype:

void __attribute__((interrupt(auto_psv, save(var1, var2)))) isr0(void);
To request the compiler to use the fast context save (using the push.s and pop.s instructions), tag the function with
the shadow attribute (see 15.1.1. Function Specifiers”). For example:

void __attribute__((interrupt(auto_psv, shadow))) isr0(void);

16.2.4 Using Macros to Declare Simple ISRs
If an interrupt handler does not require any of the optional parameters of the interrupt attribute, then a simplified
syntax may be used. The following macros are defined in the device-specific header files:

#define _ISR __attribute__((interrupt))
#define _ISRFAST __attribute__((interrupt, shadow))
For example, to declare an interrupt handler for external interrupt 0:

#include <xc.h>
void _ISR _INT0Interrupt(void);
To declare an interrupt handler for the SPI1 interrupt with fast context save:

#include <xc.h>
void _ISRFAST _SPI1Interrupt(void);

16.3 Specifying the Interrupt Vector
All 16-bit devices have a primary interrupt vector table. Some 16-bit devices have a fixed alternate vector table, some
have no alternate vector table and some have an alternate vector table which may be disabled and moved.

Note:  A device Reset is not handled through the interrupt vector table. Instead, on device Reset, the program
counter is cleared. This causes the processor to begin execution at address zero. By convention, the linker script
constructs a GOTO instruction at that location which transfers control to the C run-time startup module.

The alternate vector name is used when the ALTIVT bit is set in the INTCON2 register. For devices with alternate
vector tables which may be disabled and moved, AIVT support is configured via configuration words, notably:

• AIVTDIS to enable the vector table
• BSLIM to locate the vector table

On these devices, the tool chain will inspect the values of these configuration words to determine whether or not to
allocate space and fill in the value of the alternate vector tables. Simply specify device appropriate values for these
configuration words:

#pragma config AIVTDIS = ON
#pragma config BSLIM = 0x1FFD
and define the alternate vectors in the normal way, i.e.:

void __attribute__((interrupt)) _AltT1Interrupt(void) {}
Each exception vector occupies a program word. For tables of interrupt vectors by device family, see the
16.3.2. Interrupt Vector Tablessection.

16.3.1 Interrupt Vector Usage
To field an interrupt, a function’s address must be placed at the appropriate address in one of the vector tables,
with the function preserving any system resources that it uses. It must return to the foreground task using a RETFIE
processor instruction. Interrupt functions may be written in C. When a C function is designated as an interrupt
handler, the compiler arranges to preserve all the system resources that the compiler uses, and to return from the

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 169

function using the appropriate instruction. The compiler can optionally arrange for the interrupt vector table to be
populated with the interrupt function’s address.

To arrange for the compiler to fill in the interrupt vector to point to the interrupt function, name the function as denoted
in the vector tables (see section 16.3.2. Interrupt Vector Tables. For example, the stack error vector will automatically
be filled if the following function is defined:

void __attribute__((interrupt(auto_psv))) _StackError(void);
Note the use of the leading underscore. Similarly, the alternate stack error vector will automatically be filled if the
following function is defined:

void __attribute__((interrupt(auto_psv))) _AltStackError(void);
Again, note the use of the leading underscore.

For all interrupt vectors without specific handlers, a default interrupt handler will be installed. The default interrupt
handler is supplied by the linker and simply resets the device. An application may also provide a default interrupt
handler by declaring an interrupt function with the name _DefaultInterrupt.

The last nine interrupt vectors in each table do not have predefined hardware functions. The vectors for these
interrupts may be filled by using the names indicated in the vector tables (16.3.2. Interrupt Vector Tables), or you
may use names more appropriate to the application, while still filling the appropriate vector entry by using the irq
or altirq parameter of the interrupt attribute. For example, to specify that a function should use primary interrupt
vector 52, use the following:

void __attribute__((interrupt(auto_psv, irq(52)))) MyIRQ(void);
Similarly, to specify that a function should use alternate interrupt vector 53, use the following:

void __attribute__((interrupt(auto_psv, altirq(52)))) MyAltIRQ(void);
The irq/altirq number can be one of the interrupt request numbers 45 to 53. If the irq parameter of the
interrupt attribute is used, the compiler creates the external symbol name __Interruptn, where n is the vector
number. Therefore, the C identifiers _Interrupt45 through _Interrupt53 are reserved by the compiler. In the
same way, if the altirq parameter of the interrupt attribute is used, the compiler creates the external symbol
name __AltInterruptn, where n is the vector number. Therefore, the C identifiers _AltInterrupt45 through
_AltInterrupt53 are reserved by the compiler.

16.3.2 Interrupt Vector Tables
For tables of interrupt vectors by device family:

• In MPLAB X IDE, for newer versions of the compiler, open the Dashboard window and click on the Compiler
Help button.

• On the command-line, see the docs subdirectory of the MPLAB XC16 C compiler install directory (6.1. MPLAB
X IDE and Tools Installation). Open the XC16MasterIndex file and click on the “Interrupt Vector Tables
Reference” link.

16.4 Interrupt Service Routine Context Saving
Interrupts, by their very nature, can occur at unpredictable times. Therefore, the interrupted code must be able to
resume with the same machine state that was present when the interrupt occurred.

To properly handle a return from interrupt, the setup (prologue) code for an ISR function automatically saves the
compiler-managed working and special function registers on the stack for later restoration at the end of the ISR. You
can use the optional save parameter of the interrupt attribute to specify additional variables and SFRs to be
saved and restored.

16.4.1 Assembly and ISRs
In certain applications, it may be necessary to insert assembly statements into the ISR immediately prior to
the compiler-generated function prologue. For example, it may be required that a semaphore be incremented
immediately on entry to an interrupt service routine. This can be done as follows:

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 170

void __attribute__((interrupt(auto_psv,preprologue
(“inc _semaphore”)))) isr0(void);
The context switch leads to latency in interrupt code execution, as described in the 16.7.3. Latency section.

16.4.2 context Attribute
The context attribute may be applied to an interrupt service routine to inform the compiler that this ISR executes
at a particular Interrupt Priority Level (IPL), which has also been assigned to an alternate register set. Please see
your device data sheet or Family Reference Manual (FRM) for details on how to properly configure the device to use
alternate register sets. This feature is set up using configuration bits.

When using this attribute, it is important that the priority level of the interrupt matches the priority level of the context
that has been assigned. Changing the priority of the interrupt service routine may cause runtime corruption.

Example of use:

 // Priority Level 7 routines will use context 1
 #pragma config CTXT1 = 7
 // T1 Interrupt uses its own context
 void __attribute__((interrupt, context)) _T1Interrupt(void);
 main() {
 // Timer 1 is configured to use priority level 7
 IPC0bits.T1IP = 7;

16.5 Nesting Interrupts
The 16-bit devices support nested interrupts. Since processor resources are saved on the stack in an ISR, nested
ISRs are coded in just the same way as non-nested ones. Nested interrupts are enabled by clearing the NSTDIS
(nested interrupt disable) bit in the INTCON1 register. Note that this is the default condition as the 16-bit device
comes out of Reset with nested interrupts enabled. Each interrupt source is assigned a priority in the Interrupt Priority
Control registers (IPCn).

An interrupt is vectored if the priority of the interrupt source is greater than the current CPU priority level.

16.6 Enabling/Disabling Interrupts
Note:  Traps, such as the address error trap, cannot be disabled. Only IRQs can be disabled.

Each interrupt source can be individually enabled or disabled. One interrupt enable bit for each IRQ is allocated in
the Interrupt Enable Control registers (IECn). Setting an interrupt enable bit to one (1) enables the corresponding
interrupt; clearing the interrupt enable bit to zero (0) disables the corresponding interrupt. When the device comes out
of Reset, all interrupt enable bits are cleared to zero.

The safe method of enabling and disabling peripheral interrupts is to use the __write_to_IEC() macro, which is
defined in the device header files. This is helpful because some devices require one cycle of delay for this to take
effect, but some require two. A different version of __write_to_IEC() will be generated based on device-specific
information.

In addition, the processor has a disable interrupt instruction (DISI) that can disable all interrupts for a specified
number of instruction cycles.The DISI instruction can be used in a C program through the use of:

__builtin_disi
For example:

__builtin_disi(16);
will emit the specified DISI instruction at the point it appears in the source program. A disadvantage of using DISI
in this way is that the C programmer cannot always be sure how the C compiler will translate C source to machine
instructions, so it may be difficult to determine the cycle count for the DISI instruction. It is possible to get around this

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 171

difficulty by bracketing the code that is to be protected from interrupts by DISI instructions, the first of which sets the
cycle count to the maximum value, and the second of which sets the cycle count to zero. For example,

__builtin_disi(0x3FFF); /* disable interrupts */
/* ... protected C code ... */
__builtin_disi(0x0000); /* enable interrupts */

An alternative approach is to write directly to the DISICNT register to enable interrupts. The DISICNT register may be
modified only after a DISI instruction has been issued and if the contents of the DISICNT register are not zero.

__builtin_disi(0x3FFF); /* disable interrupts */
/* ... protected C code ... */
DISICNT = 0x0000; /* enable interrupts */

For some applications, it may be necessary to disable level 7 interrupts as well. These can only be disabled through
the modification of the COROCON IPL field. The provided support files contain some useful preprocessor macro
functions to help you safely modify the IPL value. These macros are:

SET_CPU_IPL(ipl)
SET_AND_SAVE_CPU_IPL(save_to, ipl)
RESTORE_CPU_IPL(saved_to)

For example, you may wish to protect a section of code from interrupt. The following code will adjust the current IPL
setting and restore the IPL to its previous value.

void foo(void) {
 int current_cpu_ipl;

 SET_AND_SAVE_CPU_IPL(current_cpu_ipl, 7); /* disable interrupts */
 /* protected code here */
 RESTORE_CPU_IPL(current_cpu_ipl);
}

16.7 ISR Considerations
The following sections describe how to ensure your interrupt code works as expected.

16.7.1 Sharing Memory with Mainline Code
Exercise caution when modifying the same variable within a main or low-priority ISR and a high-priority ISR. Higher
priority interrupts, when enabled, can interrupt a multiple instruction sequence and yield unexpected results when
a low-priority function has created a multiple instruction Read-Modify-Write sequence accessing that same variable.
Therefore, embedded systems must implement an “atomic” operation to ensure that the intervening high-priority ISR
will not write to the variable from which the low-priority ISR has just read, but not yet completed its write.

An atomic operation is one that cannot be broken down into its constituent parts – it cannot be interrupted. Not
all C expressions translate into an atomic operation. On dsPIC DSC devices, these expressions mainly fall into
the following categories: 32-bit expressions, floating point arithmetic, division, operations on multi-bit bit-fields, and
fixed point operations. Other factors will determine whether or not an atomic operation will be generated, such as
memory model settings, optimization level and resource availability. In other words, C does not guarantee atomicity of
operations.

Consider the general expression:

foo = bar op baz;
The operator (op) may or may not be atomic, based on the architecture of the device. In any event, the compiler may
not be able to generate the atomic operation in all instances, depending on factors that may include the following:

• availability of an appropriate atomic machine instruction
• resource availability - special registers or other constraints
• optimization level, and other options that affect data/code placement

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 172

Without knowledge of the architecture, it is reasonable to assume that the general expression requires two reads,
one for each operand and one write to store the result. Several difficulties may arise in the presence of interrupt
sequences, depending on the particular application.

Development Issues

Here are some examples of the issues that should be considered:

Example 16-1. bar Must Match baz
When it is required that bar and baz match (i.e., are updated synchronously with each other),
there is a possible hazard if either bar or baz can be updated within a higher priority interrupt
expression. Here are some sample flow sequences:

1. Safe:
read bar
read baz
perform operation

write back result to foo
2. Unsafe:

read bar

interrupt modifies baz
read baz
perform operation

write back result to foo
3. Safe:

read bar
read baz
interrupt modifies bar or baz
perform operation

write back result to foo
The first is safe because any interrupt falls outside the boundaries of the expression. The second
is unsafe because the application demands that bar and baz be updated synchronously with
each other. The third is probably safe; foo will possibly have an old value, but the value will be
consistent with the data that was available at the start of the expression.

Example 16-2. Type of foo, bar and baz
Another variation depends upon the type of foo, bar and baz. The operations “read bar,” “read
baz,” or “write back result to foo,” may not be atomic depending upon the architecture of the target
processor. For example, dsPIC DSC devices can read or write an 8-bit, 16-bit, or 32-bit quantity in
1 (atomic) instruction. But a 32-bit quantity may require two instructions depending upon instruction
selection (which in turn will depend upon optimization and memory model settings). Assume that
the types are long and the compiler is unable to choose atomic operations for accessing the data.
Then the access becomes:

read lsw bar
read msw bar
read lsw baz
read msw baz
perform operation (on lsw and on msw)

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 173

perform operation

write back lsw result to foo
write back msw result to foo
Now there are more possibilities for an update of bar or baz to cause unexpected data.

Example 16-3. Bit-fields
A third cause for concern are bit-fields. C allows memory to be allocated at the bit level, but does
not define any bit operations. In the purest sense, any operation on a bit will be treated as an
operation on the underlying type of the bit-field and will usually require some operations to extract
the field from bar and baz or to insert the field into foo. The important consideration to note is
that (again depending upon instruction architecture, optimization levels and memory settings) an
interrupted routine that writes to any portion of the bit-field where foo resides may be corruptible.
This is particularly apparent in the case where one of the operands is also the destination.

The dsPIC DSC instruction set can operate on 1 bit atomically. The compiler may select these
instructions depending upon optimization level, memory settings and resource availability.

Example 16-4. Cached Memory Values in Registers
Finally, the compiler may choose to cache memory values in registers. These are often referred
to as register variables and are particularly prone to interrupt corruption, even when an operation
involving the variable is not being interrupted. Ensure that memory resources shared between
an ISR and an interruptible function are designated as volatile. This will inform the compiler
that the memory location may be updated out-of-line from the serial code sequence. This will not
protect against the effect of non-atomic operations, but is never-the-less important.

Development Solutions

Here are some strategies to remove potential hazards:

• Design the software system such that the conflicting event cannot occur. Do not share memory between ISRs
and other functions. Make ISRs as simple as possible and move the real work to main code.

• Use care when sharing memory and, if possible, avoid sharing bit-fields which contain multiple bits.
• Protect non-atomic updates of shared memory from interrupts as you would protect critical sections of code. The

following macro can be used for this purpose:
 #define INTERRUPT_PROTECT(x) { \
 char saved_ipl; \
 \
 SET_AND_SAVE_CPU_IPL(saved_ipl,7); \
 x; \
 RESTORE_CPU_IPL(saved_ipl); } (void) 0;

This macro disables interrupts by increasing the current priority level to 7, performing the desired statement and
then restoring the previous priority level.

Application Example

The following example highlights some of the points discussed in this section:

void __attribute__((interrupt))
 HigherPriorityInterrupt(void) {
 /* User Code Here */
 LATGbits.LATG15 = 1; /* Set LATG bit 15 */
 IPC0bits.INT0IP = 2; /* Set Interrupt 0
 priority (multiple
 bits involved) to 2 */
 }

int main(void) {
 /* More User Code */

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 174

 LATGbits.LATG10 ^= 1; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements XOR operation,
 then writes result to LATG */

 LATG = 0x1238; /* No problem, this is a write
 only assignment operation */

 LATGbits.LATG5 = 1; /* No problem likely,
 this is an assignment of a
 single bit and will use a single
 instruction bit set operation */

 LATGbits.LATG2 = 0; /* No problem likely,
 single instruction bit clear
 operation probably used */

 LATG += 0x0001; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements add operation,
 then writes result to LATG */

 IPC0bits.T1IP = 5; /* HAZARD -
 Assigning a multiple bitfield
 can generate a multiple
 instruction sequence */
}

A statement can be protected from interrupt using the INTERRUPT_PROTECT macro provided above. For this
example:

INTERRUPT_PROTECT(LATGbits.LATG15 ^= 1); /* Not interruptible by
 level 1-7 interrupt
 requests and safe
 at any optimization
 level */

16.7.2 PSV Usage with Interrupt Service Routines
The introduction of managed psv pointers and CodeGuard Security psv constant sections in compiler v3.0 means
that ISRs cannot make any assumptions about the setting of PSVPAG. This is a migration issue for existing
applications with ISRs that reference the auto_psv constants section. In previous versions of the compiler, the
ISR could assume that the correct value of PSVPAG was set during program startup (unless the programmer had
explicitly changed it.)

To help mitigate this problem, two new function attributes will be introduced: auto_psv and no_auto_psv. If an ISR
references const variables or string literals using the constants-in-code memory model, the auto_psv attribute
should be added to the function definition. This attribute will cause the compiler to preserve the previous contents of
PSVPAG and set it to section .const. Upon exit, the previous value of PSVPAG will be restored. For example:

void __attribute__((interrupt, auto_psv)) _T1Interrupt()
{
 /* This function can reference const variables and
 string literals with the constants-in-code memory model. */
}

The no_auto_psv attribute is used to indicate that an ISR does not reference the auto_psv constants section.
If neither attribute is specified, the compiler assumes auto_psv and inserts the necessary instructions to ensure
correct operation at run time. A warning diagnostic message is also issued that alerts the user to the migration issue,
and to the possibility of reducing interrupt latency by specifying the no_auto_psv attribute.

16.7.3 Latency
There are two elements that affect the number of cycles between the time the interrupt source occurs and the
execution of the first instruction of your ISR code. These factors are:

• Processor Servicing of Interrupt – the amount of time it takes the processor to recognize the interrupt and
branch to the first address of the interrupt vector. To determine this value refer to the processor data sheet for
the specific processor and interrupt source being used.

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 175

• ISR Code – although an interrupt function may call other functions, whether they be user-defined functions,
library functions or implicitly called functions to implement a C operation, the compiler cannot know (in general)
which resources are used by the called function. As a result, the compiler will save all the working registers and
RCOUNT, even if they are not all used explicitly in the ISR itself. The increased latency associated with the call
does not lend itself to fast response times.

Interrupts

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 176

17. Main, Runtime Startup and Reset
When creating C code, there are elements that are required to ensure proper program operation: a main function
must be present; startup code to initialize and clear variables, to set up registers and the processor; as well as Reset
conditions that must be handled.

17.1 The main Function
The identifier main is special. It is must be used as the name of a function that will be the first function to execute
in a program. You must always have one and only one function called main() in your programs. Code associated
with main(), is not the first code to execute after Reset. Additional code provided by the compiler and known as the
runtime startup code is executed first and is responsible for transferring control to the main() function.

The prototype that should be used for main() is as follows.

int main(void);

17.2 Runtime Startup and Initialization
A C program requires certain objects to be initialized and the processor to be in a particular state before it can begin
execution of its function main(). It is the job of the runtime startup code to perform these tasks, specifically (and in
no particular order):

• Initialization of global variables assigned a value when defined
• Initialization of the stack
• Clearing of non-initialized global variables
• General setup of registers or processor state

Two C run-time startup modules are included in the libpic30-omf.a archive/library. The entry point for both
startup modules is __reset. The linker scripts construct a GOTO __reset instruction at location 0 in program
memory, which transfers control upon device Reset.

The primary startup module is linked by default and performs the following:

1. The Stack Pointer (W15) and Stack Pointer Limit register (SPLIM) are initialized, using values provided by the
linker or a custom linker script (see the 8.3. Stack section for more information).

2. If a .const section is defined, it is mapped into the program space visibility window by initializing the PSV
page and CORCON registers, as appropriate, if const-in-code memory mode is used or variables have
been explicitly allocated to space(auto_psv).

3. The data initialization template is read, causing all uninitialized objects to be cleared and all initialized objects
to be initialized with values read from program memory. The data initialization template is created by the linker.
Note:  Persistent data is never cleared or initialized.

4. If the application has defined user_init functions (see section15.1.2. Function Attributes), these are
invoked. The order of execution depends on link order.

5. The function main() is called with no parameters.
6. If main() returns, the processor will reset.

The alternate startup module is linked when the -Wl, --no-data-init option is specified. It performs the same
operations, except for step (3), which is omitted. The alternate startup module is smaller than the primary module,
and can be selected to conserve program memory if data initialization is not required.

Zipped source code (in dsPIC DSC assembly language) for both modules is provided in the <xc16 install
directory>\src\libpic30.zip. The startup modules may be modified if necessary. For example, if an
application requires main to be called with parameters, a conditional assembly directive may be changed to provide
this support.

You can override the normal startup behavior by defining the function int _crt_start_mode(void). This
function should return 0 to indicate that a normal start up procedure is used. Any other return value will indicate

Main, Runtime Startup and Reset

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 177

that preserved variables should not be initialized. If you have not defined this function, the compiler will always
initialize everything.

Main, Runtime Startup and Reset

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 178

18. Mixing C and Assembly Code
This section describes how to use assembly language and C modules together. It gives examples of using C
variables and functions in assembly code and examples of using assembly language variables and functions in C.

Items discussed are:

• 18.1. Mixing Assembly Language and C Variables and Functions – separate assembly language modules may
be assembled then linked with compiled C modules.

• 18.2. Using Inline Assembly Language – assembly language instructions may be embedded directly into the
C code. The inline assembler supports both simple (non-parameterized) assembly language statement, as well
as extended (parameterized) statements (where C variables can be accessed as operands of an assembler
instruction).

• 18.3. Predefined Assembly Macros – a list of predefined assembly-code macros to be used in C code is
provided.

18.1 Mixing Assembly Language and C Variables and Functions
The following guidelines indicate how to interface separate assembly language modules with C modules.

• Follow the register conventions described in 14.1. Register Variables. In particular, registers W0-W7 are used
for parameter passing. An assembly language function will receive parameters and pass arguments to called
functions in these registers.

• Functions not called during interrupt handling must preserve registers W8-W15. That is, the values in these
registers must be saved before they are modified and restored before returning to the calling function. Registers
W0-W7 may be used without restoring their values.

• Interrupt functions must preserve all registers. Unlike a normal function call, an interrupt may occur at any point
during the execution of a program. When returning to the normal program, all registers must be as they were
before the interrupt occurred.

• Variables or functions declared within a separate assembly file that will be referenced by any C source file
should be declared as global using the assembler directive .global. External symbols should be preceded by
at least one underscore. The C function main is named _main in assembly and conversely an assembly symbol
_do_something will be referenced in C as do_something. Undeclared symbols used in assembly files will be
treated as externally defined.

The following example shows how to use variables and functions in both assembly language and C regardless of
where they were originally defined.

The file ex1.c defines foo and cVariable to be used in the assembly language file. The C file also shows how to
call an assembly function, asmFunction, and how to access the assembly defined variable, asmVariable.

Example 18-1. Mixing C and Assembly

/*
** file: ex1.c
*/
extern unsigned int asmVariable;
extern void asmFunction(void);
unsigned int cVariable;
void foo(void)
{
 asmFunction();
 asmVariable = 0x1234;
}

The file ex2.s defines asmFunction and asmVariable as required for use in a linked
application. The assembly file also shows how to call a C function, foo, and how to access a
C defined variable, cVariable.

;
; file: ex2.s

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 179

;
 .text
 .global _asmFunction
_asmFunction:
 mov #0,w0
 mov w0,_cVariable
 return
 .global _main
_main:
 call _foo
 return
 .bss
 .global _asmVariable
 .align 2
_asmVariable: .space 2
 .end

In the C file, ex1.c, external references to symbols declared in an assembly file are declared
using the standard extern keyword; note that asmFunction, or _asmFunction in the assembly
source, is a void function and is declared accordingly.

In the assembly file, ex1.s, the symbols _asmFunction, _main and _asmVariable are made
globally visible through the use of the .global assembler directive and can be accessed by any
other source file. The symbol _main is only referenced and not declared; therefore, the assembler
takes this to be an external reference.

The following compiler example shows how to call an assembly function with two parameters. The
C function main in call1.c calls the asmFunction in call2.s with two parameters.

Example 18-2. Calling an Assembly Function in C

/*
** file: call1.c
*/
extern int asmFunction(int, int);
int x;
void
main(void)
{
 x = asmFunction(0x100, 0x200);
}

The assembly-language function sums its two parameters and returns the result.

;
; file: call2.s
;
 .global _asmFunction
_asmFunction:
 add w0,w1,w0
 return
 .end

Parameter passing in C is detailed in 15.7.2. Return Value. The two integer arguments are
passed in the W0 and W1 registers. The integer return result is transferred via register W0.
More complicated parameter lists may require different registers and care should be taken in the
hand-written assembly to follow the guidelines.

18.2 Using Inline Assembly Language
Within a C function, the asm statement may be used to insert a line of assembly language code into the assembly
language that the compiler generates. Inline assembly has two forms: simple and extended.

In the simple form, the assembler instruction is written using the syntax:

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 180

asm ("instruction");
where instruction is a valid assembly-language construct. If you are writing inline assembly in ANSI C programs,
write __asm__ instead of asm.

Note:  Only a single string can be passed to the simple form of inline assembly.

In an extended assembler instruction using asm, the operands of the instruction are specified using C expressions.
The extended syntax is:

asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]
]);

You must specify an assembler instruction template, plus an operand constraint string for each operand.
The template specifies the instruction mnemonic and optionally placeholders for the operands. The constraint
strings specify operand constraints, for example, that an operand must either be in a register (the usual case) or that
it must be an immediate value.

Constraint letters and modifiers supported by the compiler are listed in the following two tables, respectively.

Table 18-1. Constraint Letters Supported by the Compiler

Letter Constraint

a Claims WREG

b Divide support register W1

c Multiply support register W2

d General purpose data registers W1-W14

e Non-divide support registers W2-W14

g Any register, memory or immediate integer operand is allowed, except for registers that are not
general registers.

i An immediate integer operand (one with constant value) is allowed. This includes symbolic
constants whose values will be known only at assembly time.

r A register operand is allowed provided that it is in a general register.

v AWB register W13

w Accumulator register A-B

x x prefetch registers W8-W9

y y prefetch registers W10-W11

z MAC prefetch registers W4-W7

zs In Mixed-Sign Multiplication mode, allows for a signed input operand.

zu In Mixed-Sign Multiplication mode, allows for an unsigned input operand.

0, 1, … , 9 An operand that matches the specified operand number is allowed. If a digit is used together with
letters within the same alternative, the digit should come last.
By default, %n represents the first register for the operand (n). To access the second, third, or
fourth register, use a modifier letter.

C An even-odd register pair

D An even-numbered register

T A near or far data operand.

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 181

...........continued
Letter Constraint

U A near data operand.

Table 18-2. Constraint Modifiers Supported by the Compiler

Modifier Constraint

= Means that this operand is write-only for this instruction: the previous value is discarded and replaced
by output data.

+ Means that this operand is both read and written by the instruction.

& Means that this operand is an earlyclobber operand, which is modified before the instruction is
finished using the input operands. Therefore, this operand may not lie in a register that is used as an
input operand or as part of any memory address.

d Second register for operand number n, i.e., %dn.

q Fourth register for operand number n, i.e., %qn.

t Third register for operand number n, i.e., %tn.

Example 18-3. Passing C Variables
This example demonstrates how to use the swap instruction (which the compiler does not generally
use):

asm ("swap %0" : "+r"(var));
Here var is the C expression for the operand, which is both an input and an output operand. The
operand is constrained to be of type r, which denotes a register operand. The + in +r indicates
that the operand is both an input and output operand.

Each operand is described by an operand-constraint string that is followed by the C expression in
parentheses. A colon separates the assembler template from the first output operand and another
separates the last output operand from the first input, if any. Commas separate output operands
and separate inputs.

If there are no output operands, but there are input operands; then there must be two consecutive
colons surrounding the place where the output operands would go. The compiler requires that
the output operand expressions must be L-values. The input operands need not be L-values.
The compiler cannot check whether the operands have data types that are reasonable for the
instruction being executed. It does not parse the assembler instruction template and does not know
what it means, or whether it is valid assembler input. The extended asm feature is most often
used for machine instructions that the compiler itself does not know exist. If the output expression
cannot be directly addressed (for example, it is a bit-field), the constraint must allow a register. In
that case, the compiler will use the register as the output of the asm, and then store that register
into the output. If output operands are write-only, the compiler will assume that the values in these
operands before the instruction are dead and need not be generated.

Example 18-4. Clobbering Registers
Some instructions clobber specific hard registers. To describe this, write a third colon after the input
operands, followed by the names of the clobbered hard registers (given as strings separated by
commas). Here is an example:

asm volatile ("mul.b %0"
: /* no outputs */
: "U" (nvar)
: "w2");

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 182

In this case, the operand nvar is a character variable declared in near data space, as specified by
the "U" constraint. If the assembler instruction can alter the flags (condition code) register, add "cc"
to the list of clobbered registers. If the assembler instruction modifies memory in an unpredictable
fashion, add "memory" to the list of clobbered registers. This will cause the compiler to not keep
memory values cached in registers across the assembler instruction.

Example 18-5. Using Multiple Assembler Instructions
You can put multiple assembler instructions together in a single asm template, separated with
newlines (written as \n). The input operands and the output operands’ addresses are ensured not
to use any of the clobbered registers, so you can read and write the clobbered registers as many
times as you like. Here is an example of multiple instructions in a template; it assumes that the
subroutine _foo accepts arguments in registers W0 and W1:

asm ("mov %0,w0\nmov %1,W1\ncall _foo"
: /* no outputs */
: "g" (a), "g" (b)
: "W0", "W1");

In this example, the constraint strings "g" indicate a general operand.

Example 18-6. Using '&' to Prevent Input Register Clobbering
Unless an output operand has the & constraint modifier, the compiler may allocate it in the same
register as an unrelated input operand, on the assumption that the inputs are consumed before
the outputs are produced. This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use & for each output operand that may not overlap an
input operand. For example, consider the following function:

int
exprbad(int a, int b)
{
 int c;
 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=r"(c) : "r"(a), "r"(b));
 return(c);
}

The intention is to compute the value (a + b) << a. However, as written, the value computed may
or may not be this value. The correct coding informs the compiler that the operand c is modified
before the asm instruction is finished using the input operands, as follows:

int
exprgood(int a, int b)
{
 int c;
 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=&r"(c) : "r"(a), "r"(b));
 return(c);
}

Example 18-7. Matching Operands
When the assembler instruction has a read-write operand, or an operand in which only some of
the bits are to be changed, you must logically split its function into two separate operands: one
input operand and one write-only output operand. The connection between them is expressed by
constraints that say they need to be in the same location when the instruction executes. You can

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 183

use the same C expression for both operands or different expressions. For example, here is the
add instruction with bar as its read-only source operand and foo as its read-write destination:

asm ("add %2,%1,%0"
: "=r" (foo)
: "0" (foo), "r" (bar));

The constraint "0" for operand 1 says that it must occupy the same location as operand 0. A digit in
constraint is allowed only in an input operand and must refer to an output operand. Only a digit in
the constraint can ensure that one operand will be in the same place as another. The mere fact that
foo is the value of both operands is not enough to ensure that they will be in the same place in the
generated assembler code. The following would not work:

asm ("add %2,%1,%0"
: "=r" (foo)
: "r" (foo), "r" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different registers. For
example, the compiler might find a copy of the value of foo in one register and use it for operand
1, but generate the output operand 0 in a different register (copying it afterward to foo’s own
address).

Example 18-8. Naming Operands
It is also possible to specify input and output operands using symbolic names that can be
referenced within the assembler code template. These names are specified inside square brackets
preceding the constraint string, and can be referenced inside the assembler code template using
%[name] instead of a percentage sign followed by the operand number. Using named operands,
the above example could be coded as follows:

asm ("add %[foo],%[bar],%[foo]"
: [foo] "=r" (foo)
: "0" (foo), [bar] "r" (bar));

Example 18-9. Volatile ASM Statements
You can prevent an asm instruction from being deleted, moved significantly, or combined, by writing
the keyword volatile after the asm. For example:

#define disi(n) \
asm volatile ("disi #%0" \
: /* no outputs */ \
: "i" (n))

In this case, the constraint letter "i" denotes an immediate operand, as required by the disi
instruction.

Example 18-10. Handling Values Larger Than INT
Constraint letters and modifiers may be used to identify various entities with which it is acceptable
to replace a particular operand, such as %0 in:

asm("mov %1, %0" : "r"(foo) : "r"(bar));
This example indicates that the value stored in foo should be moved into bar. The example code
performs this task unless foo or bar are larger than an int.

By default, %0 represents the first register for the operand (0). To access the second, third, or fourth
register, use a modifier letter specified in Table 18-2.

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 184

18.3 Predefined Assembly Macros
Some macros used to insert assembly code in C are defined once you include <xc.h>. The macros are: Nop(),
ClrWdt(), Sleep() and Idle(). The latter two insert the PWRSAV instruction with an argument of #0 and #1,
respectively.

Mixing C and Assembly Code

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 185

19. Library Routines
Many library functions or routines (and any associated variables) will be automatically linked into a program once
they have been referenced in your source code. The use of a function from one library file will not include any other
functions from that library. Only used library functions will be linked into the program output and consume memory.

Library and precompiled object files are stored in the compiler’s installation directory structure.

Your program will require declarations for any functions or symbols used from libraries. These are contained in the
standard C header (.h) files. Header files are not library files and the two files types should not be confused. Library
files contain precompiled code, typically functions and variable definitions; the header files provide declarations (as
opposed to definitions) for functions, variables and types in the library files, as well as other preprocessor macros.

The include directories, under the compiler’s installation directory, are where the compiler stores the standard C
library system header files. The installation will automatically locate its bundled include files.

Some libraries require manual inclusion in your project, or require special options to use. See the “MPLAB XC16
Libraries Reference Guide” (DS5001456) for questions about particular libraries.

Libraries which are found automatically include:

• Standard C library
• dsPIC30 support libraries
• Standard IEEE floating point library
• Fixed point library
• Device peripheral library

Example 19-1. Using the Math Library

#include <math.h> // declare function prototype for sqrt

void main(void)
{
 double i;

 // sqrt referenced; sqrt will be linked in from library file
 i = sqrt(23.5);
}

Library Routines

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 186

20. Optimizations
MPLAB XC16 C Compiler license types are Free, EVAL and PRO. The initial compiler download begins as an
Evaluation (EVAL) license allows 60 days to evaluate the compiler as a Professional (PRO) license with the most
optimizations. The Free license has minimal optimizations. The PRO license can be purchased any time.

Different optimizations may be set ranging from no optimization to full optimization, depending on your compiler
license. When debugging code, you may prefer not to optimize your code to ensure expected program flow.

Figure 20-1. Optimization Levels per License

License Cost Optimization Options*

Professional (PRO) Yes -O0, -O1, -O2, -O3, -Os, -mpa

Free No -O0, -O1, -O2

Evaluation (EVAL) No PRO optimizations enabled for 60
days; afterward reverts to Free
optimizations.

* See 7.6.6. Options for Controlling Optimization.

20.1 Optimization Feature Summary
Each license supports optimizations equal to specific features. Lists of currently-supported optimization features are
show below. These features are subject to change.

Optimizations

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 187

Table 20-1. License Optimization Features

Free PRO

• defer pop
• delayed branch
• omit frame pointer
• guess branch prob
• cprop registers
• forward propagate
• if conversion
• if conversion2
• ipa pure const
• ipa reference
• merge constants
• split wide types
• tree ccp
• tree dce
• tree dom
• tree dse
• tree ter
• tree sra
• tree copyrename
• tree fre
• tree copy prop
• tree sink
• tree ch

All Free optimizations, plus:
• indirect inlining
• thread jumps
• crossjumping
• optimize sibling calls
• cse follow jumps
• gcse
• expensive optimizations
• cse after loop
• caller saves
• peephole2
• schedule insns
• schedule insns after reload
• regmove
• strict aliasing
• strict overflow
• reorder blocks
• reorder functions
• tree vrp
• tree builtin call dce
• tree pre
• tree switch conversion
• ipa cp
• ipa sra
• predictive commoning
• inline functions
• unswitch loops
• gcse after reload
• tree vectorize
• ipa cp clone
• Whole-program optimizations

20.2 How to Enable Optimization
MPLAB XC16 is derived from the GCC source-base which provides many different individual switches for controlling
optimizations.

It is recommended that you use the 'big O' optimization switches. The more common variants of GCC (Arm, MIPS,
ix86, etc.) may update optimization switches more quickly than the dsPIC port, so consequently there may be
individual switches that appear and disappear. Sticking with the big O optimizations is a good way to remove
surprises.

The big O optimizations are organized into four categories, declared using the -On option, where n is a numerical
value in the range of 0 to 3. Additionally, there is the -Os option, which falls somewhere between -O2 and -O3. For
optimizations supported in Free (unlicensed) compilers and additional options supported in PRO (licensed) compiler,
see 20. Optimizations.

In general, the larger the value of n, the more optimizations are performed. Some techniques are designed to reduce
code size, some are designed to increase the performance of the generated code, and some do both. You will need

Optimizations

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 188

to determine what is most important for you (speed vs. size trade-offs) and choose the option appropriate for your
application.

MPLAB XC16 also supports procedural abstraction, sometimes called function-outlining, via the -mpa option. This
optimization intends to reduce the code size by abstracting common generated code into individual functions (i.e., the
opposite of function inlining). This can reduce code size and is performed on assembly code, post compilation.

Additionally MPLAB XC16 supports -moptimize-page-setting which attempts to minimize the effect of
DSRPAG swapping with the named address space qualifiers.

20.3 Using Optimizations
The MPLAB XC16 C compiler supports general, as well as several specific, optimization options (see section
7.6.6. Options for Controlling Optimization). In most cases, only general optimization options (-On) should be used
(for details, see 20.2. How to Enable Optimization).

The more a compiler optimizes the output code, the further away from the C program the code might become. This is
the nature of optimization and is often exasperated by a weakness of debug information to represent these changes.
Optimizations tend to:

• convert structures into scalar variables (to remove unused members)
• re-order flow, or duplicate it, for speed improvements
• capture results, or partial results, for re-use later
• remove unreachable code
• remove unused variables or promote an object to a register variable
• remove code that has no externally visible effect

Many of these transformations can make debugging code much more difficult. Some of them can turn a “working”
program into something that no-longer executes correctly; typically, this means that the working program is not a
well-formed C program and the optimizer has exposed this.

20.3.1 Coding for an Optimizing Compiler
How do you get the best out of the optimizer? It turns out the answer to this question is remarkably straight-forward.

Code clearly. The C language can be quite complex. Perhaps you may remember the obfuscated C one-liner
competitions that many magazines from the early days of C used to have. These are the opposite of “code clearly.”
The chances are that if you can't read the code, then it is not correct (well-formed) and the optimizer will expose
this. Also, some clever C coding tricks will have side-effects that prevent the compiler from doing its best to get
concise executable code. Remember, you want the output of the compiler to be concise and take advantage of the
architecture...not the input!

Use well typed objects. It is recommended that you make use of the types defined in stdint.h instead of native
C types. For example, the fastest way to represent a 8-bit value on a 16-bit device, such as Microchip's dsPIC line
of products, is to use int_fast8_t from stdint.h. While you can cast (or let the compiler cast) an object to a
different type, this may indicate that you should have chosen a better type in the first place. Additionally, the size and
signed-ness of the picked type can have an impact on code generation; unfortunately, this is architecture dependent.

Take care using inline assembly (or don't use it at all). GCC-based compilers, such as MPLAB XC16, have an
extended inline assembly format that is provided to communicate how data flows through inline assembly. This allows
the compiler to properly optimize the flow of values around assembly statements. This is often a source of “compiler
bugs” and the first place to look when investigating whether or not the compiler is broken. Make sure you tell the
compiler when writing to a register in inline assembly; the compiler might be using it already! Make sure you tell the
compiler if the result of a C expression is used within the inline assembly; if the compiler does not see the use of an
expression, it might discard it. Extended GNU inline assembly is described more fully in 18.2. Using Inline Assembly
Language. Also a rich set of builtin functions are provided that perform many of the tasks for which inline assembly is
often used.

Don't be afraid to use the optimizer. Once you are confident that the code does what you want to do (test early,
test often), don't be afraid to enable optimizations. Optimizations can make it harder to debug, so it is important to
take this step once you have tested and have working code.

Optimizations

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 189

20.3.2 Help! Optimizing Broke my Code!
If turning the optimizer on has changed the execution behavior of the code, then the following sections may help you
to determine your issue and resolve it.

20.3.2.1 Sharing Data Between Different Threads of Execution
Sharing data between different threads of execution (such as between mainline code and an interrupt service routine
or between two different threads in a Realtime Operating System like environment) can sometimes be complex.

Make sure that any objects that may be shared in this way are marked as volatile (both read or write sharing).
volatile instructs the compiler to honor all accesses to memory, which will prevent the compiler from caching a
value in a register. If the variable is shared, then this is a good thing! The compiler needs to know that the variable
might change because of a hardware or other external event, such as in this example where we wish to wait for the
buffer to have some data in it before progressing:

IOPORT.buffer_emtpy = 1;
while (IOPORT.buffer_empty);

If the object is not marked as volatile when optimizing the compiler, then it might determine that the value will
never change and do something horrible to the loop or worse. Consider the rest of the code to be unreachable and
replace the expression with while(1);.

There are times however, when volatile is not enough. The compiler may not be able to compute an expression
without going through an intermediate register. This means there may be a window of time when a value is stored
in a register while the new value is being computed. If it is marked as volatile, then it will be written back. This
could be the source of data corruption, especially if the object is a single memory location that has many separate
data values like a C bitfield. In the following structure example, status is a flag set by some external process and
blinky is a heartbeat in the mainline code.

volatile struct corruptable {
 uint16_t status:3;
 uint16_t blinky:1;
} object;

...

while (object.status != 0) {
 object.blinky ^= 1;
}

If the compiler has not been able to generate an atomic, uninterruptable sequence to XOR blinky then this can be
a possible source of corruption. Consider the flow where status is updated but the blinky update is not complete.
Writing back the new value of blinky, which shares a word with status, might over-write the possibly new value of
status causing the generated code to never see when status has been updated.

If your code is similar to the above example, you can see that volatile is not a sufficient solution. Consider
coding styles that will prevent this overwrite from occurring, such as not sharing memory in that way and the use of
critical-sections to control access of shared data. Often it is efficient and clearer to make use of the object-oriented
principal of accessor functions where the access of each object is tightly controlled in one place. A well-defined
gating of shared data can allow the code to be written without using volatile at all, thus allowing the code to be
safe and share data efficiently.

20.3.2.2 Intermixing C and Assembly
If your code has any inline assembly, ensure that the code is written in such a way that the compiler knows about
register access and data flow.

For example, the following code will likely cause a failure when optimized.

int foo;

int bar() {
 asm("mov _foo,w7");
 asm("inc w7,w0");
 asm("return");
}

Optimizations

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 190

Though the example could be written in pure C as return foo+1;, the correct way to write this in inline assembly
requires the use of extended Asm syntax:

int bar() {
 int result;

 asm("inc %1,%0" : "=r"(result) : "r"(foo));
 return result;
}

This allows the compiler to connect C variables to registers. The compiler will pick an appropriate register and
arrange to save the values as needed.

Ensure any assembly function that your write satisfies the rules specified in 18. Mixing C and Assembly Code.

20.3.3 Debugging Strategies for Optimized Code
The optimizer can introduce challenges for debugging code which increase with higher levels of optimization. For
the best debugging experience, make sure that the ELF/DWARF object file format is selected (as opposed to COFF)
whenever possible. The output file format is selected in MPLAB X IDE under Project Properties>XC16 (Global
Options) (see figure below).

The DWARF symbol language has advanced features that allow the compiler to provide more information when
optimized. The compiler will be able to describe how object values flow in and out of registers, even if the register
changes. For this reason, ELF/DWARF at -O1 will provide a reasonably smooth debugging experience with some
optimizations.

Figure 20-2. Project Properties XC16 Global Options

Earlier (20.3. Using Optimizations) we mentioned some of the effects of optimizing code. Some of these effects will
prevent the debugger from displaying a value (the variable is not needed and has been optimized away) or placing a
breakpoint (the line of code does not exist).

Sometimes it is more effective to debug in a mixed C-assembly display, or to follow the C code along with the
Program Memory view.

Optimizations

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 191

Additionally, MPLAB XC C compilers provide a couple of tools that can be helpful.

• A variant of the standard C assertion mechanism can be used to return to the debugger at certain execution
points. The macro __conditional_software_breakpoint(X) is available in assert.h and can be used
to halt the debugger.

• The optimization level can be set on a function-by-function basis. For example, to make debugging of a
particular function easier while still optimizing the rest of the application, define the function like this:
Tau __attribute__((optimize(1))) fn(...){}
A declaration of this form will override the current global optimization setting on a function-by-function basis.

• The MPLAB X IDE defines the pre-processor symbol __DEBUG when a debug build is being produced. This
can be useful for enabling code changes to support debugging only when actually debugging. For example,
conditionally changing the optimization level for a given function can be implemented with a simple macro:
#ifdef __DEBUG
#define DBG_OPTIMIZE(X) __attribute__((optimize(X)))
#else
#define DBG_OPTIMIZE(X) /* not debugging */
#endif

Tau DBG_OPTIMIZE(1) fn(...) {
}

Multiple attributes can be combined. This is valid:

void __attribute__((interrupt)) DBG_OPTIMIZE(1) _T1Interrupt(void) {
}

Optimizations

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 192

21. Preprocessing
All C source files are preprocessed before compilation. The -E option can be used to preprocess and then stop the
compilation. See 7.6.2. Options for Controlling the Kind of Output

Assembler files can also be preprocessed if the file extension is .S rather than .s. See 7.1.3. Input File Types

21.1 C Language Comments
The MPLAB XC16 C Compiler supports standard C comments, as well as C++ style comments. Both types are
illustrated in the following table.

Comment Syntax Description Example

/* */ Standard C code comment. Used for
one or more lines.

/* This is line 1
This is line 2 */

// C++ code comment. Used for one line
only.

// This is line 1
// This is line 2

21.2 Preprocessing Directives
The compiler accepts several specialized preprocessor directives in addition to the standard directives. All of these
are listed in the following table.

Table 21-1. Preprocessor Directives

Directive Meaning Example

#define Define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif Short for #else #if see #ifdef
#else Conditionally include source lines see #if
#endif Terminate conditional source inclusion see #if
#error Generate an error message #error Size too big
#if Include source lines if constant expression true #if SIZE < 10

c = process(10)
#else
skip();
#endif

#ifdef Include source lines if preprocessor symbol
defined

#ifdef FLAG
do_loop();
#elif SIZE == 5
skip_loop();
#endif

Preprocessing

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 193

...........continued
Directive Meaning Example

#ifndef Include source lines if preprocessor symbol not
defined

#ifndef FLAG
jump();
#endif

#include Include text file into source #include <stdio.h>
#include "project.h"

#line Specify line number and file name for listing #line 3 final
#pragma Compiler-specific options #pragma config WDT=OFF
#undef Undefines preprocessor symbol #undef FLAG
#warning Generate a warning message #warning Length not set

Macro expansion using arguments can use the # character to convert an argument to a string, and the ## sequence
to concatenate arguments. If two expressions are being concatenated, consider using two macros in case either
expression requires substitution itself, so for example

#define paste1(a,b) a##b
#define paste(a,b) paste1(a,b)
lets you use the paste macro to concatenate two expressions that themselves may require further expansion.
Remember that once a macro identifier has been expanded, it will not be expanded again if it appears after
concatenation.

For implementation-defined behavior of preprocessing directives, see the23.13. Preprocessing Directivessection.

21.3 Predefined Macro Names
The compiler predefines several macros which can be tested by conditional directives in source code. Constants that
have been deprecated may be found in the 27. Deprecated Featuressection.

21.3.1 Compiler Version Macro
The compiler will define the constant __XC16_VERSION__ , giving a numeric value to the version identifier. This can
be used to take advantage of new compiler features while remaining backwardly compatible with older versions.

The value is based upon the major and minor version numbers of the current release. For example, release version
1.00 will have a __XC16_VERSION__ definition of 1000. This macro can be used, in conjunction with standard
preprocessor comparison statements, to conditionally include/exclude various code constructs.

The current definition of __XC16_VERSION__ can be discovered by adding --version to the command line, or by
inspecting the README.html file that came with the release.

21.3.2 Compiler Settings Macro
The following symbols are defined if compiler features are enabled.

Table 21-2. Compiler Settings Macros/Symbols

Symbol Description

__OPTIMIZATION_LEVEL__ Set to the value of the big O number. For example, both
-Os and -O2 would be set to 2.

__OPTIMIZE_SIZE__ Defined if -Os enabled, undefined otherwise.

__LARGE_ARRAYS__ Set to 1 for -menable-large-arrays, set to 0
otherwise.

Preprocessing

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 194

21.3.3 Compiler Output Type Macros
The following symbols are defined with the -ansi command line option.

Table 21-3. Macros Defined with -ansi

Symbol-Leading Double Underline Symbol-Leading & Lagging
Double Underline

Description

__XC16 __XC16__ If defined, 16-bit compiler is in use.

__C30 __C30__
__dsPICC30 __dsPICC30__
__XC16ELF __XC16ELF__ If defined, compiler is producing ELF

output.__C30ELF __C30ELF__
__dsPIC30ELF __dsPIC30ELF__
__XC16COFF __XC16COFF__ If defined, compiler is producing

COFF output.__C30COFF __C30COFF__
__dsPIC30COFF __dsPIC30COFF__

The following symbols are defined when -ansi is not selected.

Table 21-4. Macros Defined without -ansi

Symbol Description

XC16 16-bit compiler is in use.

C30

dsPIC30

21.3.4 Device Name and Family (Architecture) Macros
The compiler defines a symbol based on the target device set with -mcpu=. For example, -mcpu=30F6014, which
defines the symbol __dsPIC30F6014__.

In addition, one of the following symbols is defined for the target device family.

__dsPIC30F__
__PIC24FK__
__PIC24F__
__PIC24E__
__PIC24H__
__dsPIC33F__

__dsPIC33E__
__dsPIC33C__

21.3.5 Device Features Macros
The following symbols are defined if device features are enabled.

Table 21-5. Device Features Macros/Symbols

Symbol Description

__HAS_DSP__ Device has a DSP engine

Preprocessing

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 195

...........continued
Symbol Description

__HAS_EEDATA__ Device has EEPROM data (EEData) memory

__HAS_DMA__ Device has a DMA controller
This is a generic macro which is set if any DMA controller is present. This DOES
NOT indicate that DMA memory is present. To determine if there is any DMA
memory, use the __DMA_BASE or __DMA_LENGTH manifest constants which should
be defined the device header file.

__HAS_DMAV2__ Device has a DMA V2 controller
This macro is set if a DMA V2 controller is present. This DOES NOT indicate
that DMA memory is present. To determine if there is any DMA memory, use the
__DMA_BASE or __DMA_LENGTH manifest constants which should be defined the
device header file.

__HAS_CODEGUARD__ Device has CodeGuard™ Security

__HAS_PMP__ Device has Parallel Master Port

__HAS_PMPV2__ Device has Parallel Master Port V2

__HAS_PMP_ENHANCED__ Device has Enhanced Parallel Master Port

__HAS_EDS__ Device has Extended Data Space

__HAS_5VOLTS__ Device is a 5-volt device

21.3.6 Other Macros
The following symbols define other features.

Table 21-6. Other Macros/Symbols

Symbol Description

__FILE__ Current file name as a C string

__LINE__ Current line number as a decimal integer

__DATE__ Current date as a C string

Preprocessing

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 196

22. Linking Programs
The compiler will automatically invoke the linker unless the compiler has been requested to stop after producing an
intermediate file.

The linker will run with options that are obtained from the command-line driver. These options specify the memory of
the device and how objects should be placed in the memory. Device-specific linker scripts are used.

The linker operation can be controlled using the driver, see 7.6.9. Options for Linking for more information.

The linker creates a map file which details the memory assigned and some objects within the code. The map file
is the best place to look for memory information. See MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106) for an explanation of the detailed information in this file.

22.1 Default Memory Spaces
The compiler defines several special purpose memory spaces to match architectural features of 16-bit devices. Static
and external variables may be allocated in the special purpose memory spaces through use of the space attribute,
described in 10.10. Variable Attributes.

data
General data space. Variables in general data space can be accessed using ordinary C statements. This is the
default allocation.

xmemory - dsPIC30F, dsPIC33EP/F devices only

X data address space. Variables in X data space can be accessed using ordinary C statements. X data address
space has special relevance for DSP-oriented libraries and/or assembly language instructions.

ymemory - dsPIC30F, dsPIC33EP/F devices only

Y data address space. Variables in Y data space can be accessed using ordinary C statements. Y data address
space has special relevance for DSP-oriented libraries and/or assembly language instructions.

prog
General program space, which is normally reserved for executable code. Variables in this program space can not
be accessed using ordinary C statements. They must be explicitly accessed by the programmer, usually using
table-access inline assembly instructions, using the program space visibility window, or by qualifying with __prog__.

auto_psv
A compiler-managed area in program space, designated for program space visibility window access. Variables in this
space can be read (but not written) using ordinary C statements and are subject to a maximum of 32K total space
allocated.

psv
Program space, designated for program space visibility window access. Variables in PSV space are not managed
by the compiler and can not be accessed using ordinary C statements. They must be explicitly accessed by the
programmer, usually using table-access inline assembly instructions, or using the program space visibility window.
Variables in PSV space can be accessed using a single setting of the PSVPAG register or by qualifying with
__psv__.

eedata - Devices with EEPROM Data (EEData) Memory only

EEData space, a region of 16-bit wide non-volatile memory located at high addresses in program memory. Variables
in EEData space cannot be accessed using ordinary C statements. They must be explicitly accessed by the
programmer, usually using table-access inline assembly instructions, or using the program space visibility window.
The __HAS_EEDATA__ manifest constant is defined for devices that support EEData

dma - DMA capable devices only

DPSRAM DMA memory. Variables in DMA memory can be accessed using ordinary C statements and by the DMA
peripheral. The __HAS_DMA__ manifest constant is defined for devices that support DMA. If the device supports

Linking Programs

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 197

DMA but does not have special DPSRAM available, the linker will not be able to allocate the space and will output an
error.

22.2 Replacing Library Symbols
The MPLAB XC16 C Compiler comes with a librarian which allows you to unpack a library file and replace modules
with your own modified versions. See the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
However, you can easily replace a library module that is linked into your program without having to do this.

If you add a source file to your project which contains the definition for a routine with the same name as a library
routine, then the library routine will be replaced by your routine.

When trying to resolve a symbol (a function name or variable name, for example) the compiler first scans all the
source modules for the definition. Only if it cannot resolve the symbol in these files does it then search the library
files.

If the symbol is defined in a source file, the compiler will never actually search the libraries for this symbol and no
error will result even if the symbol was present in the library files. This may not be true if a symbol is defined twice in
source files and an error may result if there is a conflict in the definitions.

Another method is to use the weak attribute when declaring a symbol. A weak symbol may be superseded by a
global definition. When weak is applied to a reference to an external symbol, the symbol is not required for linking.

The weak attribute may be applied to functions as well as variables. Code may be written such that the function will
be used only if it is linked in from some other module. Deciding whether or not to use the feature becomes a link-time
decision, not a compile time decision.

For more information on the weak attribute, see the 10.10. Variable Attributes section.

22.3 Linker-Defined Symbols
The 16-bit linker defines several symbols that may be used in your C code development. Please see the MPLAB®

XC16 Assembler, Linker and Utilities User’s Guide (DS50002106) for more information.

A useful address symbol, _PROGRAM_END, is defined in program memory to mark the highest address used by a
CODE or PSV section. It should be referenced with the address operator (&) in a built-in function call that accepts the
address of an object in program memory. This symbol can be used by applications as an end point for checksum
calculations.

For example:

unsigned int end_page, end_offset;
 _prog_addressT big_addr;
end_page = __builtin_tblpage(&_PROGRAM_END);
end_offset = __builtin_tbloffset(&_PROGRAM_END);
_init_prog_address(big_addr, _PROGRAM_END);

22.4 Default Linker Script
The command line always requires a linker script. However, if no linker script is specified in an MPLAB IDE project,
the IDE will use the device linker script file (device.gld) included with the compiler as the default linker script. This
device-specific file contains information such as:

• Memory region definitions
• Program, data and debug sections mapping
• Interrupt and alternate interrupt vector table maps
• SFR address equates
• Base addresses for various peripherals

Linker scripts may be found, by default, in:

Linking Programs

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 198

<install-dir>\support\DeviceFamily\gld
where DeviceFamily is the 16-bit device family, such as dsPIC30F.

To use a custom linker script in your project, simply add that file to the command line or the project in the ““Linker
Files” folder.

Linking Programs

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 199

23. Implementation-Defined Behavior
This section offers implementation-defined behavior of the MPLAB XC16 C Compiler. The ISO standard for C
requires that vendors document the specifics of “implementation defined” features of the language.

23.1 Translation
Implementation-Defined Behavior for Translation is covered in section G.3.1 of the ANSI C Standard.

Is each non-empty sequence of white-space characters, other than new line, retained or is it replaced by one space
character? (ISO 5.1.1.2)

It is replaced by one space character.

How is a diagnostic message identified? (ISO 5.1.1.3)

Diagnostic messages are identified by prefixing them with the source file name and line number corresponding to the
message, separated by colon characters (‘:’).

Are there different classes of message? (ISO 5.1.1.3)

Yes.

If yes, what are they? (ISO 5.1.1.3)

Errors, which inhibit production of an output file, and warnings, which do not inhibit production of an output file.

What is the translator return status code for each class of message? (ISO 5.1.1.3)

The return status code for errors is 1; for warnings it is 0.

Can a level of diagnostic be controlled? (ISO 5.1.1.3)

Yes.

If yes, what form does the control take? (ISO 5.1.1.3)

Compiler command-line options may be used to request or inhibit the generation of warning messages.

23.2 Environment
Implementation-Defined Behavior for Environment is covered in section G.3.2 of the ANSI C Standard.

What library facilities are available to a freestanding program? (ISO 5.1.2.1)

All of the facilities of the standard C library are available, provided that a small set of functions is customized for the
environment, as described in the “Run Time Libraries” section.

Describe program termination in a freestanding environment. (ISO 5.1.2.1)

If the function main returns or the function exit is called, a HALT instruction is executed in an infinite loop. This
behavior is customizable.

Describe the arguments (parameters) passed to the function main? (ISO 5.1.2.2.1)

No parameters are passed to main.

Which of the following is a valid interactive device: (ISO 5.1.2.3)

Asynchronous terminal No

Paired display and keyboard No

Inter program connection No

Other, please describe? None

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 200

23.3 Identifiers
Implementation-Defined Behavior for Identifiers is covered in section G.3.3 of the ANSI C Standard.

How many characters beyond thirty-one (31) are significant in an identifier without external linkage? (ISO 6.1.2)

All characters are significant.

How many characters beyond six (6) are significant in an identifier with external linkage? (ISO 6.1.2)

All characters are significant.

Is case significant in an identifier with external linkage? (ISO 6.1.2)

Yes.

23.4 Characters
Implementation-Defined Behavior for Characters is covered in section G.3.4 of the ANSI C Standard.

Detail any source and execution characters which are not explicitly specified by the Standard? (ISO 5.2.1)

None.

List escape sequence value produced for listed sequences. (ISO 5.2.2)

Table 23-1. Escape Sequence Characters and Values

Sequence Value

\a 7

\b 8

\f 12

\n 10

\r 13

\t 9

\v 11

How many bits are in a character in the execution character set? (ISO 5.2.4.2)

8.

What is the mapping of members of the source character sets (in character and string literals) to members of the
execution character set? (ISO 6.1.3.4)

The identity function.

What is the equivalent type of a plain char? (ISO 6.2.1.1)

Either (user defined). The default is signed char. A compiler command-line option may be used to make the
default unsigned char.

23.5 Integers
Implementation-Defined Behavior for Integers is covered in section G.3.5 of the ANSI C Standard.

The following table describes the amount of storage and range of various types of integers: (ISO 6.1.2.5)

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 201

Table 23-2. Integer Types

Designation Size (bits) Range

char 8 -128 … 127

signed char 8 -128 … 127

unsigned char 8 0 … 255

short 16 -32768 … 32767

signed short 16 -32768 … 32767

unsigned short 16 0 … 65535

int 16 -32768 … 32767

signed int 16 -32768 … 32767

unsigned int 16 0 … 65535

long 32 -2147483648 … 2147438647

signed long 32 -2147483648 … 2147438647

unsigned long 32 0 … 4294867295

What is the result of converting an integer to a shorter signed integer, or the result of converting an unsigned integer
to a signed integer of equal length, if the value cannot be represented? (ISO 6.2.1.2)

There is a loss of significance. No error is signaled.

What are the results of bitwise operations on signed integers? (ISO 6.3)

Shift operators retain the sign. Other operators act as if the operand(s) are unsigned integers.

What is the sign of the remainder on integer division? (ISO 6.3.5)

+

What is the result of a right shift of a negative-valued signed integral type? (ISO 6.3.7)

The sign is retained.

23.6 Floating Point
Implementation-Defined Behavior for Floating Point is covered in section G.3.6 of the ANSI C Standard.

Is the scaled value of a floating constant that is in the range of the representable value for its type, the nearest
representable value, or the larger representable value immediately adjacent to the nearest representable value, or
the smallest representable value immediately adjacent to the nearest representable value? (ISO 6.1.3.1)

The nearest representable value.

The following table describes the amount of storage and range of various types of floating point numbers: (ISO
6.1.2.5)

Table 23-3. Floating-Point Types

Designation Size (bits) Range

float 32 1.175494e-38 … 3.40282346e+38

double* 32 1.175494e-38 … 3.40282346e+38

long double 64 2.22507385e-308 … 1.79769313e+308

* double is equivalent to long double if -fno-short-double is used.

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 202

What is the direction of truncation, when an integral number is converted to a floating-point number, that cannot
exactly represent the original value? (ISO 6.2.1.3)

Down.

What is the direction of truncation, or rounding, when a floating-point number is converted to a narrower floating-point
number? (ISO 6.2.1.4)

Down.

23.7 Arrays and Pointers
Implementation-Defined Behavior for Arrays and Pointers is covered in section G.3.7 of the ANSI C Standard.

What is the type of the integer required to hold the maximum size of an array that is, the type of the size of operator,
size_t? (ISO 6.3.3.4, ISO 7.1.1)

unsigned int.

What is the size of integer required for a pointer to be converted to an integral type? (ISO 6.3.4)

16 bits.

What is the result of casting a pointer to an integer, or vice versa? (ISO 6.3.4)

The mapping is the identity function.

What is the type of the integer required to hold the difference between two pointers to members of the same array,
ptrdiff_t? (ISO 6.3.6, ISO 7.1.1)

unsigned int.

23.8 Registers
Implementation-Defined Behavior for Registers is covered in section G.3.8 of the ANSI C Standard.

To what extent does the storage class specifier register actually effect the storage of objects in registers? (ISO
6.5.1)

If optimization is disabled, an attempt will be made to honor the register storage class; otherwise, it is ignored.

23.9 Structures, Unions, Enumerations and Bit-Fields
Implementation-Defined Behavior for Structures, Unions, Enumerations and Bit-Fields is covered in sections A.6.3.9
and G.3.9 of the ANSI C Standard.

What are the results if a member of a union object is accessed using a member of a different type? (ISO 6.3.2.3)

No conversions are applied.

Describe the padding and alignment of members of structures? (ISO 6.5.2.1)

Chars are byte-aligned. All other objects are word-aligned.

What is the equivalent type for a plain int bitfield? (ISO 6.5.2.1)

User defined. By default, signed int bitfield. May be made an unsigned int bitfield using a command line
option.

What is the order of allocation of bit-fields within an int? (ISO 6.5.2.1)

Bits are allocated from least-significant to most-significant.

Can a bit-field straddle a storage-unit boundary? (ISO 6.5.2.1)

Yes.

Which integer type has been chosen to represent the values of an enumeration type? (ISO 6.5.2.2)

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 203

int.

23.10 Qualifiers
Implementation-Defined Behavior for Qualifiers is covered in section G.3.10 of the ANSI C Standard.

Describe what action constitutes an access to an object that has volatile-qualified type? (ISO 6.5.3)

If an object is named in an expression, it has been accessed.

23.11 Declarators
Implementation-Defined Behavior for Declarators is covered in section G.3.11 of the ANSI C Standard.

What is the maximum number of declarators that may modify an arithmetic, structure, or union type? (ISO 6.5.4)

No limit.

23.12 Statements
Implementation-Defined Behavior for Statements is covered in section G.3.12 of the ANSI C Standard.

What is the maximum number of case values in a switch statement? (ISO 6.6.4.2)

No limit.

23.13 Preprocessing Directives
Implementation-Defined Behavior for Preprocessing Directives is covered in section G.3.13 of the ANSI C Standard.

Does the value of a single-character constant in a constant expression, that controls conditional inclusion, match the
value of the same character constant in the execution character set? (ISO 6.8.1)

Yes.

Can such a character constant have a negative value? (ISO 6.8.1)

Yes.

What method is used for locating includable source files? (ISO 6.8.2)

The preprocessor searches the current directory, followed by directories named using command-line options.

How are headers identified, or the places specified? (ISO 6.8.2)

The headers are identified on the #include directive, enclosed between < and > delimiters, or between “ and ”
delimiters. The places are specified using command-line options.

Are quoted names supported for includable source files? (ISO 6.8.2)

Yes.

What is the mapping between delimited character sequences and external source file names? (ISO 6.8.2)

The identity function.

Describe the behavior of each recognized #pragma directive. (ISO 6.8.6)

Table 23-4. #pragma Behavior

Pragma Behavior

#pragma code section-name Names the code section.

#pragma code Resets the name of the code section to its default (viz., .text).

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 204

...........continued
Pragma Behavior

#pragma config Sets configuration bits or registers.

#pragma idata section-name Names the initialized data section.

#pragma idata Resets the name of the initialized data section to its default value
(viz., .data).

#pragma udata section-name Names the uninitialized data section.

#pragma udata Resets the name of the uninitialized data section to its default
value (viz., .bss).

#pragma interrupt
function-name

Designates function-name as an interrupt function.

What are the definitions for __DATE__ and __TIME__ respectively, when the date and time of translation are not
available? (ISO 6.8.8)

Not applicable. The compiler is not supported in environments where these functions are not available.

23.14 Library Functions
Implementation-Defined Behavior for Library Functions is covered in section G.3.14 of the ANSI C Standard.

What is the null pointer constant to which the macro NULL expands? (ISO 7.1.5)

0.

How is the diagnostic printed by the assert function recognized, and what is the termination behavior of this function?
(ISO 7.2)

The assert function prints the file name, line number and test expression, separated by the colon character (‘:’). It
then calls the abort function.

What characters are tested for by the isalnum, isalpha, iscntrl, islower, isprint and isupper functions? (ISO 7.3.1)

Table 23-5. Characters Tested by is Functions

Function Characters tested

isalnum One of the letters or digits: isalpha or isdigit.

isalpha One of the letters: islower or isupper.

iscntrl One of the five standard motion control characters, backspace and alert: \f, \n, \r, \t, \v,
\b, \a.

islower One of the letters ‘a’ through ‘z’.

isprint A graphic character or the space character: isalnum or ispunct or space.

isupper One of the letters ‘A’ through ‘Z’.

ispunct One of the characters: ! “ # % & ' () ; < = > ? [\] * + , - . / : ^

What values are returned by the mathematics functions after a domain errors?
(ISO 7.5.1)

NaN.

Do the mathematics functions set the integer expression errno to the value of the macro ERANGE on underflow
range errors? (ISO 7.5.1)

Yes.

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 205

Do you get a domain error or is zero returned when the fmod function has a second argument of zero? (ISO 7.5.6.4)

Domain error.

23.15 Signals
What is the set of signals for the signal function? (ISO 7.7.1.1)

Table 23-6. Signal Function

Name Description

SIGABRT Abnormal termination.

SIGINT Receipt of an interactive attention signal.

SIGILL Detection of an invalid function image.

SIGFPE An erroneous arithmetic operation.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.

Describe the parameters and the usage of each signal recognized by the signal function. (ISO 7.7.1.1)

Application defined.

Describe the default handling and the handling at program startup for each signal recognized by the signal function?
(ISO 7.7.1.1)

None.

If the equivalent of signal (sig,SIG_DFL) is not executed prior to the call of a signal handler, what blocking of the
signal is performed? (ISO 7.7.1.1)

None.

Is the default handling reset if a SIGILL signal is received by a handler specified to the signal function? (ISO 7.7.1.1)

No.

23.16 Streams and Files
Does the last line of a text stream require a terminating new line character? (ISO 7.9.2)

No.

Do space characters, that are written out to a text stream immediately before a new line character, appear when the
stream is read back in? (ISO 7.9.2)

Yes.

How many null characters may be appended to data written to a binary stream?
(ISO 7.9.2)

None.

Is the file position indicator of an append mode stream initially positioned at the start or end of the file? (ISO 7.9.3)

Start.

Does a write on a text stream cause the associated file to be truncated beyond that point? (ISO 7.9.3)

Application defined.

Describe the characteristics of file buffering. (ISO 7.9.3)

Fully buffered.

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 206

Can zero-length file actually exist? (ISO 7.9.3)

Yes.

What are the rules for composing a valid file name? (ISO 7.9.3)

Application defined.

Can the same file be open multiple times? (ISO 7.9.3)

Application defined.

What is the effect of the remove function on an open file? (ISO 7.9.4.1)

Application defined.

What is the effect if a file with the new name exists prior to a call to the rename function? (ISO 7.9.4.2)

Application defined.

What is the form of the output for %p conversion in the fprintf function? (ISO 7.9.6.1)

A hexadecimal representation.

What form does the input for %p conversion in the fscanf function take? (ISO 7.9.6.2)

A hexadecimal representation.

23.17 tmpfile
Is an open temporary file removed if the program terminates abnormally? (ISO 7.9.4.3)

Yes.

23.18 errno
What value is the macro errno set to by the fgetpos or ftell function on failure? (ISO 7.9.9.1, (ISO 7.9.9.4)

Application defined.

What is the format of the messages generated by the perror function? (ISO 7.9.10.4)

The argument to perror, followed by a colon, followed by a text description of the value of errno.

23.19 Memory
What is the behavior of the calloc, malloc or realloc function if the size requested is zero? (ISO 7.10.3)

A block of zero length is allocated.

23.20 abort
What happens to open and temporary files when the abort function is called?
(ISO 7.10.4.1)

Nothing.

23.21 exit
What is the status returned by the exit function if the value of the argument is other than zero, EXIT_SUCCESS, or
EXIT_FAILURE? (ISO 7.10.4.3)

The value of the argument.

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 207

23.22 getenv
What limitations are there on environment names? (ISO 7.10.4.4)

Application defined.

Describe the method used to alter the environment list obtained by a call to the getenv function. (ISO 7.10.4.4)

Application defined.

23.23 system
Describe the format of the string that is passed to the system function. (ISO 7.10.4.5)

Application defined.

What mode of execution is performed by the system function? (ISO 7.10.4.5)

Application defined.

23.24 strerror
Describe the format of the error message output by the strerror function.
(ISO 7.11.6.2)

A plain character string.

List the contents of the error message strings returned by a call to the strerror
function. (ISO 7.11.6.2)

Table 23-7. Error Message Strings

Errno Message

0 No error

EDOM Domain error

ERANGE Range error

EFPOS File positioning error

EFOPEN File open error

nnn Error #nnn

Implementation-Defined Behavior

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 208

24. Embedded Compiler Compatibility Mode
All three MPLAB XC C compilers can be placed into a compatibility mode. In this mode, they are syntactically
compatible with the non-standard C language extensions used by other non-Microchip embedded compiler vendors.
This compatibility allows C source code written for other compilers to be compiled with minimum modification when
using the MPLAB XC compilers.

Since very different device architectures may be targeted by other compilers, the semantics of the non-standard
extensions may be different to that in the MPLAB XC compilers. This document indicates when the original C code
may need to be reviewed.

The compatibility features offered by the MPLAB C compilers are discussed in the following topics.

24.1 Compiling in Compatibility Mode
An option is used to enable vendor-specific syntax compatibility. When using MPLAB XC8, this option is --
ext=vendor; when using MPLAB XC16 or MPLAB XC32, the option is -mext=vendor. The argument vendor
is a key that is used to represent the syntax. See the table below for a list of all keys usable with the MPLAB XC
compilers.

Table 24-1. Vendor Keys

Vendor key Syntax XC8 Support XC16 Support XC32 Support

cci Common C Interface Yes Yes Yes

iar IAR C/C++ CompilerTM for ARM Yes Yes Yes

The Common C Interface is a language standard that is common to all Microchip MPLAB XC compilers. The
non-standard extensions associated with this syntax are already described in 4. Common C Interface and are not
repeated here.

24.2 Syntax Compatibility
The goal of this syntax compatibility feature is to ease the migration process when porting source code from other C
compilers to the native MPLAB XC compiler syntax.

Many non-standard extensions are not required when compiling for Microchip devices and, for these, there are no
equivalent extensions offered by MPLAB XC compilers. These extensions are then simply ignored by the MPLAB
XC compilers, although a warning message is usually produced to ensure you are aware of the different compiler
behavior. You should confirm that your project will still operate correctly with these features disabled.

Other non-standard extensions are not compatible with Microchip devices. Errors will be generated by the MPLAB
XC compiler if these extensions are not removed from the source code. You should review the ramifications of
removing the extension and decide whether changes are required to other source code in your project.

The following table indicates the various levels of compatibility used in the tables that are presented throughout this
guide.

Table 24-2. Level of Support Indicators

Level Explanation

support The syntax is accepted in the specified compatibility mode, and its meaning will mimic its
meaning when it is used with the original compiler.

support (no args) In the case of pragmas, the base pragma is supported in the specified compatibility mode,
but the arguments are ignored.

Embedded Compiler Compatibility Mode

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 209

...........continued
Level Explanation

native support The syntax is equivalent to that which is already accepted by the MPLAB XC compiler, and
the semantics are compatible. You can use this feature without a vendor compatibility mode
having been enabled.

ignore The syntax is accepted in the specified compatibility mode, but the implied action is not
required or performed. The extension is ignored and a warning will be issued by the
compiler.

error The syntax is not accepted in the specified compatibility mode. An error will be issued and
compilation will be terminated.

Note that even if a C feature is supported by an MPLAB XC compiler, addresses, register names, assembly
instructions, or any other device-specific argument is unlikely to be valid when compiling for a Microchip device.
Always review code which uses these items in conjunction with the data sheet of your target Microchip device.

24.3 Data Type
Some compilers allow use of the boolean type, bool, as well as associated values true and false, as specified by
the C99 ANSI Standard. This type and these values may be used by all MPLAB XC compilers when in compatibility
mode(1), as shown in the table below.

As indicated by the ANSI Standard, the <stdbool.h> header must be included for this feature to work as expected
when it is used with MPLAB XC compilers.

Table 24-3. Support for C99 bool Type

IAR Compatibility Mode

Type XC8 XC16 XC32

bool support support support

Do not confuse the boolean type, bool, and the integer type, bit, implemented by MPLAB XC8.

24.4 Operator
The @ operator may be used with other compilers to indicate the desired memory location of an object. As the
following table indicates, support for this syntax in MPLAB C is limited to MPLAB XC8 only.

Any address specified with another device is unlikely to be correct on a new architecture. Review the address in
conjunction with the data sheet for your target Microchip device.

Using @ in a compatibility mode with MPLAB XC8 will work correctly, but will generate a warning. To prevent this
warning from appearing again, use the reviewed address with the MPLAB C __at() specifier instead.

For MPLAB XC16/32, consider using the address attribute.

Table 24-4. Support for Non-standard Operator

IAR Compatibility Mode

Operator XC8 XC16 XC32

@ native support error error

2 Not all C99 features have been adopted by all Microchip MPLAB XC compilers.

Embedded Compiler Compatibility Mode

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 210

24.5 Extended Keywords
Non-standard extensions often specify how objects are defined or accessed. Keywords are usually used to indicate
the feature. The non-standard C keywords corresponding to other compilers are listed in the table below, as well
as the level of compatibility offered by MPLAB XC compilers. The table notes offer more information about some
extensions.

Table 24-5. Support for Non-Standard Keywords

IAR Compatibility Mode

Keyword XC8 XC16 XC32

__section_begin ignore support support

__section_end ignore support support

__section_size ignore support support

__segment_begin ignore support support

__segment_end ignore support support

__segment_size ignore support support

__sfb ignore support support

__sfe ignore support support

__sfs ignore support support

__asm or asm3 support4 native support native support

__arm ignore ignore ignore

__big_endian error error error

__fiq support error error

__intrinsic ignore ignore ignore

__interwork ignore ignore ignore

__irq support error error

__little_endian5 ignore ignore ignore

__nested ignore ignore ignore

__no_init support support support

__noreturn ignore support support

__ramfunc ignore ignore6 support4

__packed ignore7 support support

__root ignore support support

3 All assembly code specified by this construct is device-specific and will need review when porting to any
Microchip device.

4 The keyword, asm, is supported natively by MPLAB XC8, but this compiler only supports the __asm keyword
in IAR compatibility mode.

5 This is the default (and only) endianism used by all MPLAB XC compilers.
6 When used with MPLAB XC32, this must be used with the __longcall__ macro for full compatibility.
7 Although this keyword is ignored, by default, all structures are packed when using MPLAB XC8, so there is no

loss of functionality.

Embedded Compiler Compatibility Mode

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 211

...........continued
IAR Compatibility Mode

Keyword XC8 XC16 XC32

__swi ignore ignore ignore

__task ignore support support

__weak ignore support support

__thumb ignore ignore ignore

__farfunc ignore ignore ignore

__huge ignore ignore ignore

__nearfunc ignore ignore ignore

__inline support native support native support

24.6 Intrinsic Functions
Intrinsic functions can be used to perform common tasks in the source code. The MPLAB XC compilers’ support for
the intrinsic functions offered by other compilers is shown in the following table.

Table 24-6. Support for Non-Standard Intrinsic Functions

IAR Compatibility Mode

Function XC8 XC16 XC32

__disable_fiq8 support ignore ignore

__disable_interrupt support support support

__disable_irq1. support ignore ignore

__enable_fiq1. support ignore ignore

__enable_interrupt support support support

__enable_irq1. support ignore ignore

__get_interrupt_stat
e

ignore support support

__set_interrupt_stat
e

ignore support support

The header file <xc.h> must be included for supported functions to operate correctly.

24.7 Pragmas
Pragmas may be used by a compiler to control code generation. Any compiler will ignore an unknown pragma,
but many pragmas implemented by another compiler have also been implemented by the MPLAB XC compilers in
compatibility mode. The table below shows the pragmas and the level of support when using each of the MPLAB XC
compilers.

Many of these pragmas take arguments. Even if a pragma is supported by an MPLAB XC compiler, this support may
not apply to all of the pragma’s arguments. This is indicated in the following table.

8 These intrinsic functions map to macros which disable or enable the global interrupt enable bit on 8-bit PIC®

devices.

Embedded Compiler Compatibility Mode

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 212

Table 24-7. Support for Non-Standard Pragmas

IAR Compatibility Mode

Pragma XC8 XC16 XC32

bitfields ignore ignore ignore

data_alignment ignore support support

diag_default ignore ignore ignore

diag_error ignore ignore ignore

diag_remark ignore ignore ignore

diag_suppress ignore ignore ignore

diag_warning ignore ignore ignore

include_alias ignore ignore ignore

inline support (no args) support (no args) support (no args)

language ignore ignore ignore

location ignore support support

message support native support native support

object_attribute ignore ignore ignore

optimize ignore native support native support

pack ignore native support native support

__printf_args support support support

required ignore support support

rtmodel ignore ignore ignore

__scanf__args ignore support support

section ignore support support

segment ignore support support

swi_number ignore ignore ignore

type_attribute ignore ignore ignore

weak ignore native support native support

Embedded Compiler Compatibility Mode

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 213

25. Diagnostics
This appendix lists the most common diagnostic messages generated by the MPLAB XC16 C Compiler.

The compiler can produce two kinds of diagnostic messages: Errors and Warnings. Each kind has a different
purpose.

• Error messages report problems that make it impossible to compile your program. The compiler reports errors
with the source file name, and the line number where the problem is apparent.

• Warning messages report other unusual conditions in your code that may indicate a problem, although
compilation can (and does) proceed. Warning messages also report the source file name and line number,
but include the text warning: to distinguish them from error messages.
Warnings may indicate danger points that should be checked to ensure that your program performs as directed.
A warning may signal that obsolete features or non-standard features of the compiler are being used. Many
warnings are issued only if you ask for them with one of the -W options (for instance, -Wall requests a variety
of useful warnings).

In rare instances, the compiler may issue an internal error message report. This signifies that the compiler itself has
detected a fault that should be reported to Microchip Support.

25.1 Errors
Symbols

\x used with no following HEX digits

The escape sequence \x should be followed by hex digits.

‘&’ constraint used with no register class

The asm statement is invalid.

‘%’ constraint used with last operand

The asm statement is invalid.

#elif after #else

In a preprocessor conditional, the #else clause must appear after any #elif clauses.

#elif without #if

In a preprocessor conditional, the #if must be used before using the #elif.

#else after #else

In a preprocessor conditional, the #else clause must appear only once.

#else without #if

In a preprocessor conditional, the #if must be used before using the #else.

#endif without #if

In a preprocessor conditional, the #if must be used before using the #endif.

#error ‘message’

This error appears in response to a #error directive.

#if with no expression

An expression that evaluates to a constant arithmetic value was expected.

#include expects “FILENAME” or <FILENAME>

The file name for the #include is missing or incomplete. It must be enclosed by quotes or angle brackets.

‘#’ is not followed by a macro parameter

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 214

The stringsize operator, ‘#’ must be followed by a macro argument name.

‘#keyword’ expects “FILENAME” or <FILENAME>

The specified ‘#keyword’ expects a quoted or bracketed file name as an argument.

‘#’ is not followed by a macro parameter

The ‘#’ operator should be followed by a macro argument name.

‘##’ cannot appear at either end of a macro expansion

The concatenation operator, ‘##’ may not appear at the start or the end of a macro expansion.

A

a parameter list with an ellipsis can’t match an empty parameter name list declaration

The declaration and definition of a function must be consistent.

“symbol” after #line is not a positive integer

#line is expecting a source line number which must be positive.

aggregate value used where a complex was expected

Do not use aggregate values where complex values are expected.

aggregate value used where a float was expected

Do not use aggregate values where floating-point values are expected.

aggregate value used where an integer was expected

Do not use aggregate values where integer values are expected.

alias arg not a string

The argument to the alias attribute must be a string that names the target for which the current identifier is an alias.

alignment may not be specified for ‘identifier’

The aligned attribute may only be used with a variable.

‘__alignof’ applied to a bit-field

The ‘__alignof’ operator may not be applied to a bit-field.

alternate interrupt vector is not a constant

The interrupt vector number must be an integer constant.

alternate interrupt vector number n is not valid

A valid interrupt vector number is required.

ambiguous abbreviation argument

The specified command-line abbreviation is ambiguous.

an argument type that has a default promotion can’t match an empty parameter name list declaration.

The declaration and definition of a function must be consistent.

args to be formatted is not ...

The first-to-check index argument of the format attribute specifies a parameter that is not declared ‘…’.

argument ‘identifier’ doesn’t match prototype

Function argument types should match the function’s prototype.

argument of ‘asm’ is not a constant string

The argument of ‘asm’ must be a constant string.

argument to ‘-B’ is missing

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 215

The directory name is missing.

argument to ‘-l’ is missing

The library name is missing.

argument to ‘-specs=’ is missing

The name of the specs file is missing.

argument to ‘-x’ is missing

The language name is missing.

argument to ‘-Xlinker’ is missing

The argument to be passed to the linker is missing.

arithmetic on pointer to an incomplete type

Arithmetic on a pointer to an incomplete type is not allowed.

array index in non-array initializer

Do not use array indices in non-array initializers.

array size missing in ‘identifier’

An array size is missing.

array subscript is not an integer

Array subscripts must be integers.

‘asm’ operand constraint incompatible with operand size

The asm statement is invalid.

‘asm’ operand requires impossible reload

The asm statement is invalid.

asm template is not a string constant

Asm templates must be string constants.

assertion without predicate

#assert or #unassert must be followed by a predicate, which must be a single identifier.

‘attribute’ attribute applies only to functions

The attribute ‘attribute’ may only be applied to functions.

B

bit-field ‘identifier’ has invalid type

Bit-fields must be of enumerated or integral type.

bit-field ‘identifier’ width not an integer constant

Bit-field widths must be integer constants.

both long and short specified for ‘identifier’

A variable cannot be of type long and of type short.

both signed and unsigned specified for ‘identifier’

A variable cannot be both signed and unsigned.

braced-group within expression allowed only inside a function

It is illegal to have a braced-group within expression outside a function.

break statement not within loop or switch

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 216

Break statements must only be used within a loop or switch.

__builtin_longjmp second argument must be 1

__builtin_longjmp requires its second argument to be 1.

C

called object is not a function

Only functions may be called in C.

cannot convert to a pointer type

The expression cannot be converted to a pointer type.

cannot put object with volatile field into register

It is not legal to put an object with a volatile field into a register.

cannot reload integer constant operand in ‘asm’

The asm statement is invalid.

cannot specify both near and far attributes

The attributes near and far are mutually exclusive, only one may be used for a function or variable.

cannot take address of bit-field ‘identifier’

It is not legal to attempt to take address of a bit-field.

can’t open ‘file’ for writing

The system cannot open the specified ‘file’. Possible causes are not enough disk space to open the file, the directory
does not exist, or there is no write permission in the destination directory.

can’t set ‘attribute’ attribute after definition

The ‘attribute’ attribute must be used when the symbol is defined.

case label does not reduce to an integer constant

Case labels must be compile-time integer constants.

case label not within a switch statement

Case labels must be within a switch statement.

cast specifies array type

It is not permissible for a cast to specify an array type.

cast specifies function type

It is not permissible for a cast to specify a function type.

cast to union type from type not present in union

When casting to a union type, do so from type present in the union.

char-array initialized from wide string

Char-arrays should not be initialized from wide strings. Use ordinary strings.

file: compiler compiler not installed on this system

Only the C compiler is distributed; other high-level languages are not supported.

complex invalid for ‘identifier’

The complex qualifier may only be applied to integral and floating types.

conflicting types for ‘identifier’

Multiple, inconsistent declarations exist for identifier.

continue statement not within loop

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 217

Continue statements must only be used within a loop.

conversion to non-scalar type requested

Type conversion must be to a scalar (not aggregate) type.

D

data type of ‘name’ isn’t suitable for a register

The data type does not fit into the requested register.

declaration for parameter ‘identifier’ but no such parameter

Only parameters in the parameter list may be declared.

declaration of ‘identifier’ as array of functions

It is not legal to have an array of functions.

declaration of ‘identifier’ as array of voids

It is not legal to have an array of voids.

‘identifier’ declared as function returning a function

Functions may not return functions.

‘identifier’ declared as function returning an array

Functions may not return arrays.

decrement of pointer to unknown structure

Do not decrement a pointer to an unknown structure.

‘default’ label not within a switch statement

Default case labels must be within a switch statement.

‘symbol’ defined both normally and as an alias

A ‘symbol’ can not be used as an alias for another symbol if it has already been defined.

‘defined’ cannot be used as a macro name

The macro name cannot be called ‘defined’.

dereferencing pointer to incomplete type

A dereferenced pointer must be a pointer to an incomplete type.

division by zero in #if

Division by zero is not computable.

duplicate case value

Case values must be unique.

duplicate label ‘identifier’

Labels must be unique within their scope.

duplicate macro parameter ‘symbol’

‘symbol’ has been used more than once in the parameter list.

duplicate member ‘identifier’

Structures may not have duplicate members.

duplicate (or overlapping) case value

Case ranges must not have a duplicate or overlapping value. The error message ‘this is the first entry overlapping
that value’ will provide the location of the first occurrence of the duplicate or overlapping value. Case ranges are an
extension of the ANSI standard for the compiler.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 218

E

elements of array ‘identifier’ have incomplete type

Array elements should have complete types.

empty character constant

Empty character constants are not legal.

empty file name in ‘#keyword’

The file name specified as an argument of the specified #keyword is empty.

empty index range in initializer

Do not use empty index ranges in initializers

empty scalar initializer

Scalar initializers must not be empty.

enumerator value for ‘identifier’ not integer constant

Enumerator values must be integer constants.

error closing ‘file’

The system cannot close the specified ‘file’. Possible causes are not enough disk space to write to the file or the file
is too big.

error writing to ‘file’

The system cannot write to the specified ‘file’. Possible causes are not enough disk space to write to the file or the file
is too big.

excess elements in char array initializer

There are more elements in the list than the initializer value states.

excess elements in struct initializer

Do not use excess elements in structure initializers.

expression statement has incomplete type

The type of the expression is incomplete.

extra brace group at end of initializer

Do not place extra brace groups at the end of initializers.

extraneous argument to ‘option’ option

There are too many arguments to the specified command-line option.

F

‘identifier’ fails to be a typedef or built in type

A data type must be a typedef or built-in type.

field ‘identifier’ declared as a function

Fields may not be declared as functions.

field ‘identifier’ has incomplete type

Fields must have complete types.

first argument to __builtin_choose_expr not a constant

The first argument must be a constant expression that can be determined at compile time.

flexible array member in otherwise empty struct

A flexible array member must be the last element of a structure with more than one named member.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 219

flexible array member in union

A flexible array member cannot be used in a union.

flexible array member not at end of struct

A flexible array member must be the last element of a structure.

‘for’ loop initial declaration used outside C99 mode

A ‘for’ loop initial declaration is not valid outside C99 mode.

format string arg follows the args to be formatted

The arguments to the format attribute are inconsistent. The format string argument index must be less than the index
of the first argument to check.

format string arg not a string type

The format string index argument of the format attribute specifies a parameter which is not a string type.

format string has invalid operand number

The operand number argument of the format attribute must be a compile-time constant.

function definition declared ‘register’

Function definitions may not be declared ‘register’.

function definition declared ‘typedef’

Function definitions may not be declared ‘typedef’.

function does not return string type

The format_arg attribute may only be used with a function which return value is a string type.

function ‘identifier’ is initialized like a variable

It is not legal to initialize a function like a variable.

function return type cannot be function

The return type of a function cannot be a function.

G

global register variable follows a function definition

Global register variables should precede function definitions.

global register variable has initial value

Do not specify an initial value for a global register variable.

global register variable ‘identifier’ used in nested function

Do not use a global register variable in a nested function.

H

‘identifier’ has an incomplete type

It is not legal to have an incomplete type for the specified ‘identifier’.

‘identifier’ has both ‘extern’ and initializer

A variable declared ‘extern’ cannot be initialized.

hexadecimal floating constants require an exponent

Hexadecimal floating constants must have exponents.

I

implicit declaration of function ‘identifier’

The function identifier is used without a preceding prototype declaration or function definition.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 220

impossible register constraint in ‘asm’

The asm statement is invalid.

incompatible type for argument n of ‘identifier’

When calling functions in C, ensure that actual argument types match the formal parameter types.

incompatible type for argument n of indirect function call

When calling functions in C, ensure that actual argument types match the formal parameter types.

incompatible types in operation

The types used in operation must be compatible.

incomplete ‘name’ option

The option to the command-line parameter name is incomplete.

inconsistent operand constraints in an ‘asm’

The asm statement is invalid.

increment of pointer to unknown structure

Do not increment a pointer to an unknown structure.

initializer element is not computable at load time

Initializer elements must be computable at load time.

initializer element is not constant

Initializer elements must be constant.

initializer fails to determine size of ‘identifier’

An array initializer fails to determine its size.

initializer for static variable is not constant

Static variable initializers must be constant.

initializer for static variable uses complicated arithmetic

Static variable initializers should not use complicated arithmetic.

input operand constraint contains ‘constraint’

The specified constraint is not valid for an input operand.

int-array initialized from non-wide string

Int-arrays should not be initialized from non-wide strings.

interrupt functions must not take parameters

An interrupt function cannot receive parameters. void must be used to state explicitly that the argument list is empty.

interrupt functions must return void

An interrupt function must have a return type of void. No other return type is allowed.

interrupt modifier ‘name’ unknown

The compiler was expecting ‘irq’, ‘altirq’ or ‘save’ as an interrupt attribute modifier.

interrupt modifier syntax error

There is a syntax error with the interrupt attribute modifier.

interrupt pragma must have file scope

#pragma interrupt must be at file scope.

interrupt save modifier syntax error

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 221

There is a syntax error with the ‘save’ modifier of the interrupt attribute.

interrupt vector is not a constant

The interrupt vector number must be an integer constant.

interrupt vector number n is not valid

A valid interrupt vector number is required.

invalid #ident directive

#ident should be followed by a quoted string literal.

invalid arg to ‘__builtin_frame_address’

The argument should be the level of the caller of the function (where 0 yields the frame address of the current
function, 1 yields the frame address of the caller of the current function, and so on) and is an integer literal.

invalid arg to ‘__builtin_return_address’

The level argument must be an integer literal.

invalid argument for ‘name’

The compiler was expecting ‘data’ or ‘prog’ as the space attribute parameter.

invalid character ‘character’ in #if

This message appears when an unprintable character, such as a control character, appears after #if.

invalid initial value for member ‘name’

Bit-field ‘name’ can only be initialized by an integer.

invalid initializer

Do not use invalid initializers.

Invalid location qualifier: ‘symbol’

Expecting ‘sfr’ or ‘gpr’, which are ignored on dsPIC DSC devices, as location qualifiers.

invalid operands to binary ‘operator’

The operands to the specified binary operator are invalid.

Invalid option ‘option’

The specified command-line option is invalid.

Invalid option ‘symbol’ to interrupt pragma

Expecting shadow and/or save as options to interrupt pragma.

Invalid option to interrupt pragma

Garbage at the end of the pragma.

Invalid or missing function name from interrupt pragma

The interrupt pragma requires the name of the function being called.

Invalid or missing section name

The section name must start with a letter or underscore (‘_’) and be followed by a sequence of letters, underscores
and/or numbers. The names ‘access’, ‘shared’ and ‘overlay’ have special meaning.

invalid preprocessing directive #‘directive’

Not a valid preprocessing directive. Check the spelling.

invalid preprologue argument

The preprologue option is expecting an assembly statement or statements for its argument enclosed in double
quotes.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 222

invalid register name for ‘name’

File scope variable ‘name’ declared as a register variable with an illegal register name.

invalid register name ‘name’ for register variable

The specified name is not the name of a register.

invalid save variable in interrupt pragma

Expecting a symbol or symbols to save.

invalid storage class for function ‘identifier’

Functions may not have the ‘register’ storage class.

invalid suffix ‘suffix’ on integer constant

Integer constants may be suffixed by the letters ‘u’, ‘U’, ‘l’ and ‘L’ only.

invalid suffix on floating constant

A floating constant suffix may be ‘f’, ‘F’, ‘l’ or ‘L’ only. If there are two ‘L’s, they must be adjacent and the same case.

invalid type argument of ‘operator’

The type of the argument to operator is invalid.

invalid type modifier within pointer declarator

Only const or volatile may be used as type modifiers within a pointer declarator.

invalid use of array with unspecified bounds

Arrays with unspecified bounds must be used in valid ways.

invalid use of incomplete typedef ‘typedef’

The specified typedef is being used in an invalid way; this is not allowed.

invalid use of undefined type ‘type identifier’

The specified type is being used in an invalid way; this is not allowed.

invalid use of void expression

Void expressions must not be used.

“name” is not a valid filename

#line requires a valid file name.

‘filename’ is too large

The specified file is too large to process the file. Its probably larger than 4 GB, and the preprocessor refuses to deal
with such large files. It is required that files be less than 4 GB in size.

ISO C forbids data definition with no type or storage class

A type specifier or storage class specifier is required for a data definition in ISO C.

ISO C requires a named argument before ‘...’

ISO C requires a named argument before ‘...’.

L

label label referenced outside of any function

Labels may only be referenced inside functions.

label ‘label’ used but not defined

The specified label is used but is not defined.

language ‘name’ not recognized

Permissible languages include: c assembler none.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 223

filename: linker input file unused because linking not done

The specified filename was specified on the command line, and it was taken to be a linker input file (since it was not
recognized as anything else). However, the link step was not run. Therefore, this file was ignored.

long long long is too long for GCC

The compiler supports integers no longer than long long.

long or short specified with char for ‘identifier’

The long and short qualifiers cannot be used with the char type.

long or short specified with floating type for ‘identifier’

The long and short qualifiers cannot be used with the float type.

long, short, signed or unsigned invalid for ‘identifier’

The long, short and signed qualifiers may only be used with integral types.

M

macro names must be identifiers

Macro names must start with a letter or underscore followed by more letters, numbers or underscores.

macro parameters must be comma-separated

Commas are required between parameters in a list of parameters.

macro ‘name’ passed x arguments, but takes just y

Too many arguments were passed to macro ‘name’.

macro ‘name’ requires y arguments, but only z given

Not enough arguments were passed to macro ‘name’.

matching constraint not valid in output operand

The asm statement is invalid.

‘symbol’ may not appear in macro parameter list

‘symbol’ is not allowed as a parameter.

Missing ‘=’ for ‘save’ in interrupt pragma

The save parameter requires an equal sign before the variable(s) are listed. For example, #pragma interrupt
isr0 save=var1,var2
missing ‘(’after predicate

#assert or #unassert expects parentheses around the answer. For example:
#assert PREDICATE (ANSWER)
missing ‘(’ in expression

Parentheses are not matching, expecting an opening parenthesis.

missing ‘)’ after “defined”

Expecting a closing parenthesis.

missing ‘)’ in expression

Parentheses are not matching, expecting a closing parenthesis.

missing ‘)’ in macro parameter list

The macro is expecting parameters to be within parentheses and separated by commas.

missing ‘)’ to complete answer

#assert or #unassert expects parentheses around the answer.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 224

missing argument to ‘option’ option

The specified command-line option requires an argument.

missing binary operator before token ‘token’

Expecting an operator before the ‘token’.

missing terminating ‘character’ character

Missing terminating character such as a single quote ‘, double quote ” or right angle bracket >.

missing terminating > character

Expecting terminating > in #include directive.

more than n operands in ‘asm’

The asm statement is invalid.

multiple default labels in one switch

Only a single default label may be specified for each switch.

multiple parameters named ‘identifier’

Parameter names must be unique.

multiple storage classes in declaration of ‘identifier’

Each declaration should have a single storage class.

N

negative width in bit-field ‘identifier’

Bit-field widths may not be negative.

nested function ‘name’ declared ‘extern’

A nested function cannot be declared ‘extern’.

nested redefinition of ‘identifier’

Nested redefinitions are illegal.

no data type for mode ‘mode’

The argument mode specified for the mode attribute is a recognized GCC machine mode, but it is not one that is
implemented in the compiler.

no include path in which to find ‘name’

Cannot find include file ‘name’.

no macro name given in #‘directive’ directive

A macro name must follow the #define, #undef, #ifdef or #ifndef directives.

nonconstant array index in initializer

Only constant array indices may be used in initializers.

non-prototype definition here

If a function prototype follows a definition without a prototype and the number of arguments is inconsistent between
the two, this message identifies the line number of the non-prototype definition.

number of arguments doesn’t match prototype

The number of function arguments must match the function’s prototype.

O

operand constraint contains incorrectly positioned ‘+’ or ‘=’

The asm statement is invalid.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 225

operand constraints for ‘asm’ differ in number of alternatives

The asm statement is invalid.

operator “defined” requires an identifier

“defined” is expecting an identifier.

operator ‘symbol’ has no right operand

Preprocessor operator ‘symbol’ requires an operand on the right side.

output number n not directly addressable

The asm statement is invalid.

output operand constraint lacks ‘=’

The asm statement is invalid.

output operand is constant in ‘asm’

The asm statement is invalid.

overflow in enumeration values

Enumeration values must be in the range of ‘int’.

P

parameter ‘identifier’ declared void

Parameters may not be declared void.

parameter ‘identifier’ has incomplete type

Parameters must have complete types.

parameter ‘identifier’ has just a forward declaration

Parameters must have complete types; forward declarations are insufficient.

parameter ‘identifier’ is initialized

It is not legal to initialize parameters.

parameter name missing

The macro was expecting a parameter name. Check for two commas without a name between.

parameter name missing from parameter list

Parameter names must be included in the parameter list.

parameter name omitted

Parameter names may not be omitted.

param types given both in param list and separately

Parameter types should be given either in the parameter list or separately, but not both.

parse error

The source line cannot be parsed; it contains errors.

pointer value used where a complex value was expected

Do not use pointer values where complex values are expected.

pointer value used where a floating point value was expected

Do not use pointer values where floating-point values are expected.

pointers are not permitted as case values

A case value must be an integer-valued constant or constant expression.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 226

predicate must be an identifier

#assert or #unassert require a single identifier as the predicate.

predicate’s answer is empty

The #assert or #unassert has a predicate and parentheses but no answer inside the parentheses, which is required.

previous declaration of ‘identifier’

This message identifies the location of a previous declaration of identifier that conflicts with the current declaration.

identifier previously declared here

This message identifies the location of a previous declaration of identifier that conflicts with the current declaration.

identifier previously defined here

This message identifies the location of a previous definition of identifier that conflicts with the current definition.

prototype declaration

Identifies the line number where a function prototype is declared. Used in conjunction with other error messages.

R

redeclaration of ‘identifier’

The identifier is multiply declared.

redeclaration of ‘enum identifier’

Enums may not be redeclared.

‘identifier’ redeclared as different kind of symbol

Multiple, inconsistent declarations exist for identifier.

redefinition of ‘identifier’

The identifier is multiply defined.

redefinition of ‘struct identifier’

Structs may not be redefined.

redefinition of ‘union identifier’

Unions may not be redefined.

register name given for non-register variable ‘name’

Attempt to map a register to a variable which is not marked as register.

register name not specified for ‘name’

File scope variable ‘name’ declared as a register variable without providing a register.

register specified for ‘name’ isn’t suitable for data type

Alignment or other restrictions prevent using requested register.

request for member ‘identifier’ in something not a structure or union

Only structure or unions have members. It is not legal to reference a member of anything else, since nothing else has
members.

requested alignment is not a constant

The argument to the aligned attribute must be a compile-time constant.

requested alignment is not a power of 2

The argument to the aligned attribute must be a power of two.

requested alignment is too large

The alignment size requested is larger than the linker allows. The size must be 4096 or less and a power of 2.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 227

return type is an incomplete type

Return types must be complete.

S

save variable ‘name’ index not constant

The subscript of the array ‘name’ is not a constant integer.

save variable ‘name’ is not word aligned

The object being saved must be word aligned

save variable ‘name’ size is not even

The object being saved must be evenly sized.

save variable ‘name’ size is not known

The object being saved must have a known size.

section attribute cannot be specified for local variables

Local variables are always allocated in registers or on the stack. It is therefore not legal to attempt to place local
variables in a named section.

section attribute not allowed for identifier

The section attribute may only be used with a function or variable.

section of identifier conflicts with previous declaration

If multiple declarations of the same identifier specify the section attribute, then the value of the attribute must be
consistent.

sfr address ‘address’ is not valid

The address must be less than 0x2000 to be valid.

sfr address is not a constant

The sfr address must be a constant.

‘size of’ applied to a bit-field

‘sizeof’ must not be applied to a bit-field.

size of array ‘identifier’ has non-integer type

Array size specifiers must be of integer type.

size of array ‘identifier’ is negative

Array sizes may not be negative.

size of array ‘identifier’ is too large

The specified array is too large.

size of variable ‘variable’ is too large

The maximum size of the variable can be 32768 bytes.

storage class specified for parameter ‘identifier’

A storage class may not be specified for a parameter.

storage size of ‘identifier’ isn’t constant

Storage size must be compile-time constants.

storage size of ‘identifier’ isn’t known

The size of identifier is incompletely specified.

stray ‘character’ in program

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 228

Do not place stray ‘character’ characters in the source program.

strftime formats cannot format arguments

While using the attribute format when the archetype parameter is strftime, the third parameter to the attribute, which
specifies the first parameter to match against the format string, should be 0. strftime style functions do not have input
values to match against a format string.

structure has no member named ‘identifier’

A structure member named ‘identifier’ is referenced; but the referenced structure contains no such member. This is
not allowed.

subscripted value is neither array nor pointer

Only arrays or pointers may be subscripted.

switch quantity not an integer

Switch quantities must be integers.

symbol ‘symbol’ not defined

The symbol ‘symbol’ needs to be declared before it may be used in the pragma.

syntax error

A syntax error exists on the specified line.

syntax error ‘:’ without preceding ‘?’

A ‘:’ must be preceded by ‘?’ in the ‘?:’ operator.

T

the only valid combination is ‘long double’

The long qualifier is the only qualifier that may be used with the double type.

this built-in requires a frame pointer

__builtin_return_address requires a frame pointer. Do not use the -fomit-frame-pointer option.

this is a previous declaration

If a label is duplicated, this message identifies the line number of a preceding declaration.

too few arguments to function

When calling a function in C, do not specify fewer arguments than the function requires. Nor should you specify too
many.

too few arguments to function ‘identifier’

When calling a function in C, do not specify fewer arguments than the function requires. Nor should you specify too
many.

too many alternatives in ‘asm’

The asm statement is invalid.

too many arguments to function

When calling a function in C, do not specify more arguments than the function requires. Nor should you specify too
few.

too many arguments to function ‘identifier’

When calling a function in C, do not specify more arguments than the function requires. Nor should you specify too
few.

too many decimal points in number

Expecting only one decimal point.

top-level declaration of ‘identifier’ specifies ‘auto’

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 229

Auto variables can only be declared inside functions.

two or more data types in declaration of ‘identifier’

Each identifier may have only a single data type.

two types specified in one empty declaration

No more that one type should be specified.

type of formal parameter n is incomplete

Specify a complete type for the indicated parameter.

type mismatch in conditional expression

Types in conditional expressions must not be mismatched.

typedef ‘identifier’ is initialized

It is not legal to initialize typedef’s. Use __typeof__ instead.

U

‘identifier’ undeclared (first use in this function)

The specified identifier must be declared.

‘identifier’ undeclared here (not in a function)

The specified identifier must be declared.

union has no member named ‘identifier’

A union member named ‘identifier’ is referenced, but the referenced union contains no such member. This is not
allowed.

unknown field ‘identifier’ specified in initializer

Do not use unknown fields in initializers.

unknown machine mode ‘mode’

The argument mode specified for the mode attribute is not a recognized machine mode.

unknown register name ‘name’ in ‘asm’

The asm statement is invalid.

unrecognized format specifier

The argument to the format attribute is invalid.

unrecognized option ‘-option’

The specified command-line option is not recognized.

unrecognized option ‘option’

‘option’ is not a known option.

‘identifier’ used prior to declaration

The identifier is used prior to its declaration.

unterminated #‘name’

#endif is expected to terminate a #if, #ifdef or #ifndef conditional.

unterminated argument list invoking macro ‘name’

Evaluation of a function macro has encountered the end of file before completing the macro expansion.

unterminated comment

The end of file was reached while scanning for a comment terminator.

V

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 230

‘va_start’ used in function with fixed args

‘va_start’ should be used only in functions with variable argument lists.

variable ‘identifier’ has initializer but incomplete type

It is not legal to initialize variables with incomplete types.

variable or field ‘identifier’ declared void

Neither variables nor fields may be declared void.

variable-sized object may not be initialized

It is not legal to initialize a variable-sized object.

virtual memory exhausted

Not enough memory left to write error message.

void expression between ‘(‘ and ’)’

Expecting a constant expression but found a void expression between the parentheses.

‘void’ in parameter list must be the entire list

If ‘void’ appears as a parameter in a parameter list, then there must be no other parameters.

void value not ignored as it ought to be

The value of a void function should not be used in an expression.

W

warning: -pipe ignored because -save-temps specified

The -pipe option cannot be used with the -save-temps option.

warning: -pipe ignored because -time specified

The -pipe option cannot be used with the -time option.

warning: ‘-x spec’ after last input file has no effect

The ‘-x’ command line option affects only those files named after its on the command line; if there are no such files,
then this option has no effect.

weak declaration of ‘name’ must be public

Weak symbols must be externally visible.

weak declaration of ‘name’ must precede definition

‘name’ was defined and then declared weak.

wrong number of arguments specified for attribute attribute

There are too few or too many arguments given for the attribute named ‘attribute’.

wrong type argument to bit-complement

Do not use the wrong type of argument to this operator.

wrong type argument to decrement

Do not use the wrong type of argument to this operator.

wrong type argument to increment

Do not use the wrong type of argument to this operator.

wrong type argument to unary exclamation mark

Do not use the wrong type of argument to this operator.

wrong type argument to unary minus

Do not use the wrong type of argument to this operator.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 231

wrong type argument to unary plus

Do not use the wrong type of argument to this operator.

Z

zero width for bit-field ‘identifier’

Bit-fields may not have zero width.

25.2 Warnings
Symbols

‘/*’ within comment

A comment mark was found within a comment.

‘$’ character(s) in identifier or number

Dollar signs in identifier names are an extension to the standard.

#‘directive’ is a GCC extension

#warning, #include_next, #ident, #import, #assert and #unassert directives are GCC extensions and are not of ISO
C89.

#import is obsolete, use an #ifndef wrapper in the header file

The #import directive is obsolete. #import was used to include a file if it hadn’t already been included. Use the #ifndef
directive instead.

#include_next in primary source file

#include_next starts searching the list of header file directories after the directory in which the current file was
found. In this case, there were no previous header files so it is starting in the primary source file.

#pragma pack (pop) encountered without matching #pragma pack (push, <n>)

The pack(pop) pragma must be paired with a pack(push) pragma, which must precede it in the source file.

#pragma pack (pop, identifier) encountered without matching #pragma pack (push, identifier, <n>)

The pack(pop) pragma must be paired with a pack(push) pragma, which must precede it in the source file.

#warning: message

The directive #warning causes the preprocessor to issue a warning and continue preprocessing. The tokens following
#warning are used as the warning message.

A

absolute address specification ignored

Ignoring the absolute address specification for the code section in the #pragma statement because it is not supported
in the compiler. Addresses must be specified in the linker script and code sections can be defined with the keyword
__attribute__.

address of register variable ‘name’ requested

The register specifier prevents taking the address of a variable.

alignment must be a small power of two, not n

The alignment parameter of the pack pragma must be a small power of two.

anonymous enum declared inside parameter list

An anonymous enum is declared inside a function parameter list. It is usually better programming practice to declare
enums outside parameter lists, since they can never become complete types when defined inside parameter lists.

anonymous struct declared inside parameter list

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 232

An anonymous struct is declared inside a function parameter list. It is usually better programming practice to declare
structs outside parameter lists, since they can never become complete types when defined inside parameter lists.

anonymous union declared inside parameter list

An anonymous union is declared inside a function parameter list. It is usually better programming practice to declare
unions outside parameter lists, since they can never become complete types when defined inside parameter lists.

anonymous variadic macros were introduced in C99

Macros which accept a variable number of arguments is a C99 feature.

argument ‘identifier’ might be clobbered by ‘longjmp’ or ‘vfork’

An argument might be changed by a call to longjmp. These warnings are possible only in optimizing compilation.

array ‘identifier’ assumed to have one element

The length of the specified array was not explicitly stated. In the absence of information to the contrary, the compiler
assumes that it has one element.

array subscript has type ‘char’

An array subscript has type ‘char’.

array type has incomplete element type

Array types should not have incomplete element types.

asm operand n probably doesn’t match constraints

The specified extended asm operand probably doesn’t match its constraints.

assignment of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by assignment.

assignment of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by assignment.

‘identifier’ attribute directive ignored

The named attribute is not a known or supported attribute, and is therefore ignored.

‘identifier’ attribute does not apply to types

The named attribute may not be used with types. It is ignored.

‘identifier’ attribute ignored

The named attribute is not meaningful in the given context, and is therefore ignored.

‘attribute’ attribute only applies to function types

The specified attribute can only be applied to the return types of functions and not to other declarations.

B

backslash and newline separated by space

While processing for escape sequences, a backslash and newline were found separated by a space.

backslash-newline at end of file

While processing for escape sequences, a backslash and newline were found at the end of the file.

bit-field ‘identifier’ type invalid in ISO C

The type used on the specified identifier is not valid in ISO C.

braces around scalar initializer

A redundant set of braces around an initializer is supplied.

built-in function ‘identifier’ declared as non-function

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 233

The specified function has the same name as a built-in function, yet is declared as something other than a function.

C

C++ style comments are not allowed in ISO C89

Use C style comments ‘/*’ and ‘*/’ instead of C++ style comments ‘//’.

call-clobbered register used for global register variable

Choose a register that is normally saved and restored by function calls (W8-W13), so that library routines will not
clobber it.

cannot inline function ‘main’

The function ‘main’ is declared with the inline attribute. This is not supported, since main must be called from the C
start-up code, which is compiled separately.

can’t inline call to ‘identifier’ called from here

The compiler was unable to inline the call to the specified function.

case value ‘n’ not in enumerated type

The controlling expression of a switch statement is an enumeration type, yet a case expression has the value n,
which does not correspond to any of the enumeration values.

case value ‘value’ not in enumerated type ‘name’

‘value’ is an extra switch case that is not an element of the enumerated type ‘name’.

cast does not match function type

The return type of a function is cast to a type that does not match the function’s type.

cast from pointer to integer of different size

A pointer is cast to an integer that is not 16 bits wide.

cast increases required alignment of target type

When compiling with the -Wcast-align command-line option, the compiler verifies that casts do not increase the
required alignment of the target type. For example, this warning message will be given if a pointer to char is cast
as a pointer to int, since the aligned for char (byte alignment) is less than the alignment requirement for int (word
alignment).

character constant too long

Character constants must not be too long.

comma at end of enumerator list

Unnecessary comma at the end of the enumerator list.

comma operator in operand of #if

Not expecting a comma operator in the #if directive.

comparing floating point with == or != is unsafe

Floating-point values can be approximations to infinitely precise real numbers. Instead of testing for equality, use
relational operators to see whether the two values have ranges that overlap.

comparison between pointer and integer

A pointer type is being compared to an integer type.

comparison between signed and unsigned

One of the operands of a comparison is signed, while the other is unsigned. The signed operand will be treated as an
unsigned value, which may not be correct.

comparison is always n

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 234

A comparison involves only constant expressions, so the compiler can evaluate the run time result of the comparison.
The result is always n.

comparison is always n due to width of bit-field

A comparison involving a bit-field always evaluates to n because of the width of the bit-field.

comparison is always false due to limited range of data type

A comparison will always evaluate to false at run time, due to the range of the data types.

comparison is always true due to limited range of data type

A comparison will always evaluate to true at run time, due to the range of the data types.

comparison of promoted ~unsigned with constant

One of the operands of a comparison is a promoted ~unsigned, while the other is a constant.

comparison of promoted ~unsigned with unsigned

One of the operands of a comparison is a promoted ~unsigned, while the other is unsigned.

comparison of unsigned expression >= 0 is always true

A comparison expression compares an unsigned value with zero. Since unsigned values cannot be less than zero,
the comparison will always evaluate to true at run time.

comparison of unsigned expression < 0 is always false

A comparison expression compares an unsigned value with zero. Since unsigned values cannot be less than zero,
the comparison will always evaluate to false at run time.

comparisons like X<=Y<=Z do not have their mathematical meaning

A C expression does not necessarily mean the same thing as the corresponding mathematical expression. In
particular, the C expression X<=Y<=Z is not equivalent to the mathematical expression X ≤ Y ≤ Z.

conflicting types for built-in function ‘identifier’

The specified function has the same name as a built-in function but is declared with conflicting types.

const declaration for ‘identifier’ follows non-const

The specified identifier was declared const after it was previously declared as non-const.

control reaches end of non-void function

All exit paths from non-void function should return an appropriate value. The compiler detected a case where a
non-void function terminates, without an explicit return value. Therefore, the return value might be unpredictable.

conversion lacks type at end of format

When checking the argument list of a call to printf, scanf, etc., the compiler found that a format field in the format
string lacked a type specifier.

concatenation of string literals with __FUNCTION__ is deprecated

__FUNCTION__ will be handled the same way as __func__ (which is defined by the ISO standard C99). __func__
is a variable, not a string literal, so it does not catenate with other string literals.

conflicting types for ‘identifier’

The specified identifier has multiple, inconsistent declarations.

D

data definition has no type or storage class

A data definition was detected that lacked a type and storage class.

data qualifier ‘qualifier’ ignored

Data qualifiers, which include ‘access’, ‘shared’ and ‘overlay’, are not used in the compiler, but are there for
compatibility with the MPLAB C Compiler for PIC18 MCUs.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 235

declaration of ‘identifier’ has ‘extern’ and is initialized

Externs should not be initialized.

declaration of ‘identifier’ shadows a parameter

The specified identifier declaration shadows a parameter, making the parameter inaccessible.

declaration of ‘identifier’ shadows a symbol from the parameter list

The specified identifier declaration shadows a symbol from the parameter list, making the symbol inaccessible.

declaration of ‘identifier’ shadows global declaration

The specified identifier declaration shadows a global declaration, making the global inaccessible.

‘identifier’ declared inline after being called

The specified function was declared inline after it was called.

‘identifier’ declared inline after its definition

The specified function was declared inline after it was defined.

‘identifier’ declared ‘static’ but never defined

The specified function was declared static, but was never defined.

decrement of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by decrementing.

decrement of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by decrementing.

‘identifier’ defined but not used

The specified function was defined, but was never used.

deprecated use of label at end of compound statement

A label should not be at the end of a statement. It should be followed by a statement.

dereferencing ‘void *’ pointer

It is not correct to dereference a ‘void *’ pointer. Cast it to a pointer of the appropriate type before dereferencing the
pointer.

division by zero

Compile-time division by zero has been detected.

duplicate ‘const’

The ‘const’ qualifier should be applied to a declaration only once.

duplicate ‘restrict’

The ‘restrict’ qualifier should be applied to a declaration only once.

duplicate ‘volatile’

The ‘volatile’ qualifier should be applied to a declaration only once.

E

embedded ‘\0’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that the format string contains an
embedded ‘\0’ (zero), which can cause early termination of format string processing.

empty body in an else-statement

An else statement is empty.

empty body in an if-statement

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 236

An if statement is empty.

empty declaration

The declaration contains no names to declare.

empty range specified

The range of values in a case range is empty, that is, the value of the low expression is greater than the value of the
high expression. Recall that the syntax for case ranges is case low ... high:.

‘enum identifier’ declared inside parameter list

The specified enum is declared inside a function parameter list. It is usually better programming practice to declare
enums outside parameter lists, since they can never become complete types when defined inside parameter lists.

enum defined inside parms

An enum is defined inside a function parameter list.

enumeration value ‘identifier’ not handled in switch

The controlling expression of a switch statement is an enumeration type, yet not all enumeration values have case
expressions.

enumeration values exceed range of largest integer

Enumeration values are represented as integers. The compiler detected that an enumeration range cannot be
represented in any of the compiler integer formats, including the largest such format.

excess elements in array initializer

There are more elements in the initializer list than the array was declared with.

excess elements in scalar initializer“);

There should be only one initializer for a scalar variable.

excess elements in struct initializer

There are more elements in the initializer list than the structure was declared with.

excess elements in union initializer

There are more elements in the initializer list than the union was declared with.

extra semicolon in struct or union specified

The structure type or union type contains an extra semicolon.

extra tokens at end of #‘directive’ directive

The compiler detected extra text on the source line containing the #‘directive’ directive.

F

-ffunction-sections may affect debugging on some targets

You may have problems with debugging if you specify both the -g option and the -ffunction-sections option.

first argument of ‘identifier’ should be ‘int’

Expecting declaration of first argument of specified identifier to be of type int.

floating constant exceeds range of ‘double’

A floating-point constant is too large or too small (in magnitude) to be represented as a ‘double’.

floating constant exceeds range of ‘float’

A floating-point constant is too large or too small (in magnitude) to be represented as a ‘float’.

floating constant exceeds range of ‘long double’

A floating-point constant is too large or too small (in magnitude) to be represented as a ‘long double’.

floating point overflow in expression

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 237

When folding a floating-point constant expression, the compiler found that the
expression overflowed, that is, it could not be represented as float.

‘type1’ format, ‘type2’ arg (arg ‘num’)

The format is of type ‘type1’, but the argument being passed is of type ‘type2’.
The argument in question is the ‘num’ argument.

format argument is not a pointer (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that the specified argument number
n was not a pointer, san the format specifier indicated it should be.

format argument is not a pointer to a pointer (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that the specified argument number
n was not a pointer san the format specifier indicated it should be.

fprefetch-loop-arrays not supported for this target

The option to generate instructions to prefetch memory is not supported for this target.

function call has aggregate value

The return value of a function is an aggregate.

function declaration isn’t a prototype

When compiling with the -Wstrict-prototypes command-line option, the compiler ensures that function
prototypes are specified for all functions. In this case, a function definition was encountered without a preceding
function prototype.

function declared ‘noreturn’ has a ‘return’ statement

A function was declared with the noreturn attribute-indicating that the function does not return-yet the function
contains a return statement. This is inconsistent.

function might be possible candidate for attribute ‘noreturn’

The compiler detected that the function does not return. If the function had been declared with the ‘noreturn’ attribute,
then the compiler might have been able to generate better code.

function returns address of local variable

Functions should not return the addresses of local variables, since, when the function returns, the local variables are
de-allocated.

function returns an aggregate

The return value of a function is an aggregate.

function ‘name’ redeclared as inline

previous declaration of function ‘name’ with attribute noinline

Function ‘name’ was declared a second time with the keyword ‘inline’, which now allows the function to be considered
for inlining.

function ‘name’ redeclared with attribute noinline

previous declaration of function ‘name’ was inline

Function ‘name’ was declared a second time with the noinline attribute, which now causes it to be ineligible for
inlining.

function ‘identifier’ was previously declared within a block

The specified function has a previous explicit declaration within a block, yet it has an implicit declaration on the
current line.

G

GCC does not yet properly implement ‘[*]’ array declarators

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 238

Variable length arrays are not currently supported by the compiler.

H

hex escape sequence out of range

The hex sequence must be less than 100 in hex (256 in decimal).

I

ignoring asm-specifier for non-static local variable ‘identifier’

The asm-specifier is ignored when it is used with an ordinary, non-register local variable.

ignoring invalid multibyte character

When parsing a multibyte character, the compiler determined that it was invalid. The invalid character is ignored.

ignoring option ‘option’ due to invalid debug level specification

A debug option was used with a debug level that is not a valid debug level.

ignoring #pragma identifier

The specified pragma is not supported by the compiler, and is ignored.

imaginary constants are a GCC extention

ISO C does not allow imaginary numeric constants.

implicit declaration of function ‘identifier’

The specified function has no previous explicit declaration (definition or function prototype), so the compiler makes
assumptions about its return type and parameters.

increment of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by incrementing.

increment of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by incrementing.

initialization of a flexible array member

A flexible array member is intended to be dynamically allocated not statically.

‘identifier’ initialized and declared ‘extern’

Externs should not be initialized.

initializer element is not constant

Initializer elements should be constant.

inline function ‘name’ given attribute noinline

The function ‘name’ has been declared as inline, but the noinline attribute prevents the function from being
considered for inlining.

inlining failed in call to ‘identifier’ called from here

The compiler was unable to inline the call to the specified function.

integer constant is so large that it is unsigned

An integer constant value appears in the source code without an explicit unsigned modifier, yet the number cannot be
represented as a signed int; therefore, the compiler automatically treats it as an unsigned int.

integer constant is too large for ‘type’ type

An integer constant should not exceed 2^32 - 1 for an unsigned long int, 2^63 - 1 for a long long int or 2^64 - 1 for an
unsigned long long int.

integer overflow in expression

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 239

When folding an integer constant expression, the compiler found that the expression overflowed; that is, it could not
be represented as an int.

invalid application of ‘sizeof’ to a function type

It is not recommended to apply the sizeof operator to a function type.

invalid application of ‘sizeof’ to a void type

The sizeof operator should not be applied to a void type.

invalid digit ‘digit’ in octal constant

All digits must be within the radix being used. For instance, only the digits 0 thru 7 may be used for the octal radix.

invalid second arg to __builtin_prefetch; using zero

Second argument must be 0 or 1.

invalid storage class for function ‘name’

‘auto’ storage class should not be used on a function defined at the top level. ‘static’ storage class should not be used
if the function is not defined at the top level.

invalid third arg to __builtin_prefetch; using zero

Third argument must be 0, 1, 2, or 3.

‘identifier’ is an unrecognized format function type

The specified identifier, used with the format attribute, is not one of the recognized format function types printf, scanf,
or strftime.

‘identifier’ is narrower than values of its type

A bit-field member of a structure has for its type an enumeration, but the width of the field is insufficient to represent
all enumeration values.

‘storage class’ is not at beginning of declaration

The specified storage class is not at the beginning of the declaration. Storage classes are required to come first in
declarations.

ISO C does not allow extra ‘;’ outside of a function

An extra ‘;’ was found outside a function. This is not allowed by ISO C.

ISO C does not support ‘++’ and ‘--’ on complex types

The increment operator and the decrement operator are not supported on complex types in ISO C.

ISO C does not support ‘~’ for complex conjugation

The bitwise negation operator cannot be use for complex conjugation in ISO C.

ISO C does not support complex integer types

Complex integer types, such as __complex__ short int, are not supported in ISO C.

ISO C does not support plain ‘complex’ meaning ‘double complex’

Using __complex__ without another modifier is equivalent to ‘complex double’ which is not supported in ISO C.

ISO C does not support the ‘char’ ‘kind of format’ format

ISO C does not support the specification character ‘char’ for the specified ‘kind of format’.

ISO C doesn’t support unnamed structs/unions

All structures and/or unions must be named in ISO C.

ISO C forbids an empty source file

The file contains no functions or data. This is not allowed in ISO C.

ISO C forbids empty initializer braces

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 240

ISO C expects initializer values inside the braces.

ISO C forbids nested functions

A function has been defined inside another function.

ISO C forbids omitting the middle term of a ?: expression

The conditional expression requires the middle term or expression between the ‘?’ and the ‘:’.

ISO C forbids qualified void function return type

A qualifier may not be used with a void function return type.

ISO C forbids range expressions in switch statements

Specifying a range of consecutive values in a single case label is not allowed in ISO C.

ISO C forbids subscripting ‘register’ array

Subscripting a ‘register’ array is not allowed in ISO C.

ISO C forbids taking the address of a label

Taking the address of a label is not allowed in ISO C.

ISO C forbids zero-size array ‘name’

The array size of ‘name’ must be larger than zero.

ISO C restricts enumerator values to range of ‘int’

The range of enumerator values must not exceed the range of the int type.

ISO C89 forbids compound literals

Compound literals are not valid in ISO C89.

ISO C89 forbids mixed declarations and code

Declarations should be done first before any code is written. It should not be mixed in with the code.

ISO C90 does not support ‘[*]’ array declarators

Variable length arrays are not supported in ISO C90.

ISO C90 does not support complex types

Complex types, such as __complex__ float x, are not supported in ISO C90.

ISO C90 does not support flexible array members

A flexible array member is a new feature in C99. ISO C90 does not support it.

ISO C90 does not support ‘long long’

The long long type is not supported in ISO C90.

ISO C90 does not support ‘static’ or type qualifiers in parameter array declarators

When using an array as a parameter to a function, ISO C90 does not allow the array declarator to use ‘static’ or type
qualifiers.

ISO C90 does not support the ‘char’ ‘function’ format

ISO C does not support the specification character ‘char’ for the specified function format.

ISO C90 does not support the ‘modifier’ ‘function’ length modifier

The specified modifier is not supported as a length modifier for the given function.

ISO C90 forbids variable-size array ‘name’

In ISO C90, the number of elements in the array must be specified by an integer constant expression.

L

label ‘identifier’ defined but not used

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 241

The specified label was defined, but not referenced.

large integer implicitly truncated to unsigned type

An integer constant value appears in the source code without an explicit unsigned modifier, yet the number cannot be
represented as a signed int; therefore, the compiler automatically treats it as an unsigned int.

left-hand operand of comma expression has no effect

One of the operands of a comparison is a promoted ~unsigned, while the other is unsigned.

left shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise, the shift is meaningless, and
the result is undefined.

left shift count is negative

Shift counts should be positive. A negative left shift count does not mean shift right;
it is meaningless.

library function ‘identifier’ declared as non-function

The specified function has the same name as a library function, yet is declared as something other than a function.

line number out of range

The limit for the line number for a #line directive in C89 is 32767 and in C99 is 2147483647.

‘identifier’ locally external but globally static

The specified identifier is locally external but globally static. This is suspect.

location qualifier ‘qualifier’ ignored

Location qualifiers, which include ‘grp’ and ‘sfr’, are not used in the compiler, but are there for compatibility with
MPLAB C Compiler for PIC18 MCUs.

‘long’ switch expression not converted to ‘int’ in ISO C

ISO C does not convert ‘long’ switch expressions to ‘int’.

M

‘main’ is usually a function

The identifier main is usually used for the name of the main entry point of an application. The compiler detected that it
was being used in some other way, for example, as the name of a variable.

‘operation’ makes integer from pointer without a cast

A pointer has been implicitly converted to an integer.

‘operation’ makes pointer from integer without a cast

An integer has been implicitly converted to a pointer.

malformed ‘#pragma pack-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma pack(pop[,id])-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma pack(push[,id],<n>)-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma weak-ignored’

The syntax of the weak pragma is incorrect.

‘identifier’ might be used uninitialized in this function

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 242

The compiler detected a control path though a function which might use the specified identifier before it has been
initialized.

missing braces around initializer

A required set of braces around an initializer is missing.

missing initializer

An initializer is missing.

modification by ‘asm’ of read-only variable ‘identifier’

A const variable is the left-hand-side of an assignment in an ‘asm’ statement.

multi-character character constant

A character constant contains more than one character.

N

negative integer implicitly converted to unsigned type

A negative integer constant value appears in the source code, but the number cannot be represented as a signed int;
therefore, the compiler automatically treats it as an unsigned int.

nested extern declaration of ‘identifier’

There are nested extern definitions of the specified identifier.

no newline at end of file

The last line of the source file is not terminated with a newline character.

no previous declaration for ‘identifier’

When compiling with the -Wmissing-declarations command-line option, the compiler ensures that functions are
declared before they are defined. In this case, a function definition was encountered without a preceding function
declaration.

no previous prototype for ‘identifier’

When compiling with the -Wmissing-prototypes command-line option, the compiler ensures that function
prototypes are specified for all functions. In this case, a function definition was encountered without a preceding
function prototype.

no semicolon at end of struct or union

A semicolon is missing at the end of the structure or union declaration.

non-ISO-standard escape sequence, ‘seq’

‘seq’ is ‘\e’ or ‘\E’ and is an extension to the ISO standard. The sequence can be used in a string or character
constant and stands for the ASCII character <ESC>.

non-static declaration for ‘identifier’ follows static

The specified identifier was declared non-static after it was previously declared as static.

‘noreturn’ function does return

A function declared with the noreturn attribute returns. This is inconsistent.

‘noreturn’ function returns non-void value

A function declared with the noreturn attribute returns a non-void value. This is inconsistent.

null format string

When checking the argument list of a call to printf, scanf, etc., the compiler found that the format string was missing.

O

octal escape sequence out of range

The octal sequence must be less than 400 in octal (256 in decimal).

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 243

output constraint ‘constraint’ for operand n is not at the beginning

Output constraints in extended asm should be at the beginning.

overflow in constant expression

The constant expression has exceeded the range of representable values for its type.

overflow in implicit constant conversion

An implicit constant conversion resulted in a number that cannot be represented as a signed int; therefore, the
compiler automatically treats it as an unsigned int.

P

parameter has incomplete type

A function parameter has an incomplete type.

parameter names (without types) in function declaration

The function declaration lists the names of the parameters but not their types.

parameter points to incomplete type

A function parameter points to an incomplete type.

parameter ‘identifier’ points to incomplete type

The specified function parameter points to an incomplete type.

passing arg ‘number’ of ‘name’ as complex rather than floating due to prototype

The prototype declares argument ‘number’ as a complex, but a float value is used so the compiler converts to a
complex to agree with the prototype.

passing arg ‘number’ of ‘namee’ as complex rather than integer due to prototype

The prototype declares argument ‘number’ as a complex, but an integer value is used so the compiler converts to a
complex to agree with the prototype.

passing arg ‘number’ of ‘name’ as floating rather than complex due to prototype

The prototype declares argument ‘number’ as a float, but a complex value is used so the compiler converts to a float
to agree with the prototype.

passing arg ‘number’ of ‘name’ as ‘float’ rather than ‘double’ due to prototype

The prototype declares argument ‘number’ as a float, but a double value is used so the compiler converts to a float to
agree with the prototype.

passing arg ‘number’ of ‘name’ as floating rather than integer due to prototype

The prototype declares argument ‘number’ as a float, but an integer value is used so the compiler converts to a float
to agree with the prototype.

passing arg ‘number’ of ‘name’ as integer rather than complex due to prototype

The prototype declares argument ‘number’ as an integer, but a complex value is used so the compiler converts to an
integer to agree with the prototype.

passing arg ‘number’ of ‘name’ as integer rather than floating due to prototype

The prototype declares argument ‘number’ as an integer, but a float value is used so the compiler converts to an
integer to agree with the prototype.

pointer of type ‘void *’ used in arithmetic

A pointer of type ‘void’ has no size and should not be used in arithmetic.

pointer to a function used in arithmetic

A pointer to a function should not be used in arithmetic.

previous declaration of ‘identifier’

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 244

This warning message appears in conjunction with another warning message. The previous message identifies the
location of the suspect code. This message identifies the first declaration or definition of the identifier.

previous implicit declaration of ‘identifier’

This warning message appears in conjunction with the warning message “type mismatch with previous implicit
declaration”. It locates the implicit declaration of the identifier that conflicts with the explicit declaration.

R

“name” reasserted

The answer for ”name“ has been duplicated.

“name” redefined

“name” was previously defined and is being redefined now.

redefinition of ‘identifier’

The specified identifier has multiple, incompatible definitions.

redundant redeclaration of ‘identifier’ in same scope

The specified identifier was re-declared in the same scope. This is redundant.

register used for two global register variables

Two global register variables have been defined to use the same register.

repeated ‘flag’ flag in format

When checking the argument list of a call to strftime, the compiler found that there was a flag in the format string that
is repeated.

When checking the argument list of a call to printf, scanf, etc., the compiler found that one of the flags { ,+,#,0,-} was
repeated in the format string.

return-type defaults to ‘int’

In the absence of an explicit function return-type declaration, the compiler assumes that the function returns an int.

return type of ‘name’ is not ‘int’

The compiler is expecting the return type of ‘name’ to be ‘int’.

‘return’ with a value, in function returning void

The function was declared as void but returned a value.

‘return’ with no value, in function returning non-void

A function declared to return a non-void value contains a return statement with no value. This is inconsistent.

right shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise, the shift is meaningless, and
the result is undefined.

right shift count is negative

Shift counts should be positive. A negative right shift count does not mean shift left; it is meaningless.

S

second argument of ‘identifier’ should be ‘char **’

Expecting second argument of specified identifier to be of type ‘char **’.

second parameter of ‘va_start’ not last named argument

The second parameter of ‘va_start’ must be the last named argument.

shadowing built-in function ‘identifier’

The specified function has the same name as a built-in function, and consequently shadows the built-in function.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 245

shadowing library function ‘identifier’

The specified function has the same name as a library function, and consequently shadows the library function.

shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise, the shift is meaningless, and
the result is undefined.

shift count is negative

Shift counts should be positive. A negative left shift count does not mean shift right, nor does a negative right shift
count mean shift left; they are meaningless.

size of ‘name’ is larger than n bytes

Using -Wlarger-than-len will produce the above warning when the size of ‘name’ is larger than the len bytes
defined.

size of ‘identifier’ is n bytes

The size of the specified identifier (which is n bytes) is larger than the size specified with the -Wlarger-than-len
command-line option.

size of return value of ‘name’ is larger than n bytes

Using -Wlarger-than-len will produce the above warning when the size of the return value of ‘name’ is larger
than the len bytes defined.

size of return value of ‘identifier’ is n bytes

The size of the return value of the specified function is n bytes, which is larger than the size specified with the
-Wlarger-than-len command-line option.

spurious trailing ‘%’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that there was a spurious trailing
‘%’ character in the format string.

statement with no effect

A statement has no effect.

static declaration for ‘identifier’ follows non-static

The specified identifier was declared static after it was previously declared as non-static.

string length ‘n’ is greater than the length ‘n’ ISO Cn compilers are required to support

The maximum string length for ISO C89 is 509. The maximum string length for ISO C99 is 4095.

‘struct identifier’ declared inside parameter list

The specified struct is declared inside a function parameter list. It is usually better programming practice to declare
structs outside parameter lists, since they can never become complete types when defined inside parameter lists.

struct has no members

The structure is empty, it has no members.

structure defined inside parms

A union is defined inside a function parameter list.

style of line directive is a GCC extension

Use the format ‘#line linenum’ for traditional C.

subscript has type ‘char’

An array subscript has type ‘char’.

suggest explicit braces to avoid ambiguous ‘else’

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 246

A nested if statement has an ambiguous else clause. It is recommended that braces be used to remove the
ambiguity.

suggest hiding #directive from traditional C with an indented #

The specified directive is not traditional C and may be ‘hidden’ by indenting the #. A directive is ignored unless its # is
in column 1.

suggest not using #elif in traditional C

#elif should not be used in traditional K&R C.

suggest parentheses around assignment used as truth value

When assignments are used as truth values, they should be surrounded by parentheses, to make the intention clear
to readers of the source program.

suggest parentheses around + or - inside shift

suggest parentheses around && within ||

suggest parentheses around arithmetic in operand of |

suggest parentheses around comparison in operand of |

suggest parentheses around arithmetic in operand of ^

suggest parentheses around comparison in operand of ^

suggest parentheses around + or - in operand of &

suggest parentheses around comparison in operand of &

While operator precedence is well defined in C, sometimes a reader of an expression might be required to expend a
few additional microseconds in comprehending the evaluation order of operands in an expression if the reader has to
rely solely upon the precedence rules, without the aid of explicit parentheses. A case in point is the use of the ‘+’ or ‘-’
operator inside a shift. Many readers will be spared unnecessary effort if parentheses are use to clearly express the
intent of the programmer, even though the intent is unambiguous to the programmer and to the compiler.

T

‘identifier’ takes only zero or two arguments

Expecting zero or two arguments only.

the meaning of ‘\a’ is different in traditional C

When the -wtraditional option is used, the escape sequence ‘\a’ is not recognized as a meta-sequence: its value
is just ‘a’. In non-traditional compilation, ‘\a’ represents the ASCII BEL character.

the meaning of ‘\x’ is different in traditional C

When the -wtraditional option is used, the escape sequence ‘\x’ is not recognized as a meta-sequence: its value
is just ‘x’. In non-traditional compilation, ‘\x’ introduces a hexadecimal escape sequence.

third argument of ‘identifier’ should probably be ‘char **’

Expecting third argument of specified identifier to be of type ‘char **’.

this function may return with or without a value

All exit paths from non-void function should return an appropriate value. The compiler detected a case where a
non-void function terminates, sometimes with and sometimes without an explicit return value. Therefore, the return
value might be unpredictable.

this target machine does not have delayed branches

The -fdelayed-branch option is not supported.

too few arguments for format

When checking the argument list of a call to printf, scanf, etc., the compiler found that the number of actual
arguments was fewer than that required by the format string.

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 247

too many arguments for format

When checking the argument list of a call to printf, scanf, etc., the compiler found that the number of actual
arguments was more than that required by the format string.

traditional C ignores #‘directive’ with the # indented

Traditionally, a directive is ignored unless its # is in column 1.

traditional C rejects initialization of unions

Unions cannot be initialized in traditional C.

traditional C rejects the ‘ul’ suffix

Suffix ‘u’ is not valid in traditional C.

traditional C rejects the unary plus operator

The unary plus operator is not valid in traditional C.

trigraph ??char converted to char

Trigraphs, which are a three-character sequence, can be used to represent symbols that may be missing from the
keyboard. Trigraph sequences convert as follows:

??(= [??) =] ??< = { ??> = } ??= = # ??/ = \ ??' = ^ ??! = | ??- = ~

trigraph ??char ignored

Trigraph sequence is being ignored. char can be (,), <, >, =, /, ', !, or -.

type defaults to ‘int’ in declaration of ‘identifier’

In the absence of an explicit type declaration for the specified identifier, the compiler assumes that its type is int.

type mismatch with previous external decl

previous external decl of ‘identifier’

The type of the specified identifier does not match the previous declaration.

type mismatch with previous implicit declaration

An explicit declaration conflicts with a previous implicit declaration.

type of ‘identifier’ defaults to ‘int’

In the absence of an explicit type declaration, the compiler assumes that identifier’s type is int.

type qualifiers ignored on function return type

The type qualifier being used with the function return type is ignored.

U

undefining ‘defined’

‘defined’ cannot be used as a macro name and should not be undefined.

undefining ‘name’

The #undef directive was used on a previously defined macro name ‘name’.

union cannot be made transparent

The transparent_union attribute was applied to a union, but the specified variable does not satisfy the
requirements of that attribute.

‘union identifier’ declared inside parameter list

The specified union is declared inside a function parameter list. It is usually better programming practice to declare
unions outside parameter lists, since they can never become complete types when defined inside parameter lists.

union defined inside parms

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 248

A union is defined inside a function parameter list.

union has no members

The union is empty, it has no members.

unknown conversion type character ‘character’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that one of the conversion
characters in the format string was invalid (unrecognized).

unknown conversion type character 0xnumber in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that one of the conversion
characters in the format string was invalid (unrecognized).

unknown escape sequence ‘sequence’

‘sequence’ is not a valid escape code. An escape code must start with a ‘\’ and use one of the following characters: n,
t, b, r, f, b, \, ', ”, a, or ?, or it must be a numeric sequence in octal or hex. In octal, the numeric sequence must be less
than 400 octal. In hex, the numeric sequence must start with an ‘x’ and be less than 100 hex.

unnamed struct/union that defines no instances

struct/union is empty and has no name.

unreachable code at beginning of identifier

There is unreachable code at beginning of the specified function.

unrecognized gcc debugging option: char

The ‘char’ is not a valid letter for the -dletters debugging option.

unused parameter ‘identifier’

The specified function parameter is not used in the function.

unused variable ‘name’

The specified variable was declared but not used.

use of ‘*’ and ‘flag’ together in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that both the flags ‘*’ and ‘flag’
appear in the format string.

use of C99 long long integer constants

Integer constants are not allowed to be declared long long in ISO C89.

use of ‘length’ length modifier with ‘type’ type character

When checking the argument list of a call to printf, scanf, etc., the compiler found that the specified length was
incorrectly used with the specified type.

‘name’ used but never defined

The specified function was used but never defined.

‘name’ used with ‘spec’ ‘function’ format

‘name’ is not valid with the conversion specification ‘spec’ in the format of the specified function.

useless keyword or type name in empty declaration

An empty declaration contains a useless keyword or type name.

V

__VA_ARGS__ can only appear in the expansion of a C99 variadic macro

The predefined macro __VA_ARGS should be used in the substitution part of a macro definition using ellipses.

value computed is not used

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 249

A value computed is not used.

variable ‘name’ declared ‘inline’

The keyword ‘inline’ should be used with functions only.

variable ‘%s’ might be clobbered by ‘longjmp’ or ‘vfork’

A non-volatile automatic variable might be changed by a call to longjmp. These warnings are possible only in
optimizing compilation.

volatile register variables don’t work as you might wish

Passing a variable as an argument could transfer the variable to a different register (w0-w7) than the one specified
(if not w0-w7) for argument transmission. The compiler may issue an instruction that is not suitable for the specified
register and may need to temporarily move the value to another place. These are only issues if the specified register
is modified asynchronously (i.e., though an ISR).

W

-Wformat-extra-args ignored without -Wformat

-Wformat must be specified to use -Wformat-extra-args.

-Wformat-nonliteral ignored without -Wformat

-Wformat must be specified to use -Wformat-nonliteral.

-Wformat-security ignored without -Wformat

-Wformat must be specified to use -Wformat-security.

-Wformat-y2k ignored without -Wformat

-Wformat must be specified to use.

-Wid-clash-LEN is no longer supported

The option -Wid-clash-LEN is no longer supported.

-Wmissing-format-attribute ignored without -Wformat

-Wformat must be specified to use -Wmissing-format-attribute.

-Wuninitialized is not supported without -O

Optimization must be on to use the -Wuninitialized option.

‘identifier’ was declared ‘extern’ and later ‘static’

The specified identifier was previously declared ‘extern’ and is now being declared as static.

‘identifier’ was declared implicitly ‘extern’ and later ‘static’

The specified identifier was previously declared implicitly ‘extern’ and is now being declared as static.

‘identifier’ was previously implicitly declared to return ‘int’

There is a mismatch against the previous implicit declaration.

‘identifier’ was used with no declaration before its definition

When compiling with the -Wmissing-declarations command-line option, the compiler ensures that functions are
declared before they are defined. In this case, a function definition was encountered without a preceding function
declaration.

‘identifier’ was used with no prototype before its definition

When compiling with the -Wmissing-prototypes command-line option, the compiler ensures that function
prototypes are specified for all functions. In this case, a function call was encountered without a preceding function
prototype for the called function.

writing into constant object (arg n)

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 250

When checking the argument list of a call to printf, scanf, etc., the compiler found that the specified argument number
n was a const object that the format specifier indicated should be written into.

Z

zero-length identifier format string

When checking the argument list of a call to printf, scanf, etc., the compiler found that the format string was empty
(“”).

Diagnostics

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 251

26. GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license
if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML

GNU Free Documentation License

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 252

https://fsf.org/

for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

GNU Free Documentation License

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 253

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.
• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document's license notice.
• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year,

new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
"History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant

Section.
• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of
all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

GNU Free Documentation License

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 254

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

GNU Free Documentation License

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 255

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can
decide which future versions of this License can be used, that proxy's public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

GNU Free Documentation License

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 256

https://www.gnu.org/licenses/

27. Deprecated Features
The features described below are considered to be obsolete and have been replaced with more advanced
functionality. Projects which depend on deprecated features will work properly with versions of the language tools
cited. The use of a deprecated feature will result in a warning; programmers are encouraged to revise their projects
in order to eliminate any dependency on deprecated features. Support for these features may be removed entirely in
future versions of the language tools.

27.1 Predefined Constants
The following preprocessing symbols are defined by the compiler.

Symbol Defined with -ansi command-line option?

dsPIC30 No

__dsPIC30 Yes

__dsPIC30__ Yes

The ELF-specific version of the compiler defines the following preprocessing symbols.

Symbol Defined with -ansi command-line option?

dsPIC30ELF No

__dsPIC30ELF Yes

__dsPIC30ELF__ Yes

The COFF-specific version of the compiler defines the following preprocessing symbols.

Symbol Defined with -ansi command-line option?

dsPIC30COFF No

__dsPIC30COFF Yes

__dsPIC30COFF__ Yes

For the most current information, see 21.3. Predefined Macro Names.

27.2 Variables in Specified Registers
The compiler allows you to put a few global variables into specified hardware registers.

Note:  Using too many registers, in particular register W0, may impair the ability of the 16-bit compiler to compile. It
is not recommended that registers be placed into fixed registers.

You can also specify the register in which an ordinary register variable should be allocated.

• Global register variables reserve registers throughout the program. This may be useful in programs such as
programming language interpreters which have a couple of global variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The compiler’s data flow analysis is
capable of determining where the specified registers contain live values, and where they are available for other
uses. Stores into local register variables may be deleted when they appear to be unused. References to local
register variables may be deleted, moved or simplified.

These local variables are sometimes convenient for use with the extended inline assembly (see 18. Mixing C and
Assembly Code), if you want to write one output of the assembler instruction directly into a particular register. (This
will work, provided that the register you specify fits the constraints specified for that operand in the inline assembly
statement).

Deprecated Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 257

27.2.1 Defining Global Register Variables
You can define a global register variable like this:

register int *foo asm ("w8");
Here w8 is the name of the register which should be used. Choose a register that is normally saved and restored by
function calls (W8-W13), so that library routines will not clobber it.

Defining a global register variable in a certain register reserves that register entirely for this use, at least within the
current compilation. The register will not be allocated for any other purpose in the functions in the current compilation.
The register will not be saved and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted, moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than one thread of control,
because the system library routines may temporarily use the register for other things (unless you recompile them
especially for the task at hand).

It is not safe for one function that uses a global register variable to call another such function foo by way of a third
function lose that was compiled without knowledge of this variable (i.e., in a source file in which the variable wasn’t
declared). This is because lose might save the register and put some other value there. For example, you can’t
expect a global register variable to be available in the comparison-function that you pass to qsort, since qsort
might have put something else in that register. This problem can be avoided by recompiling qsort with the same
global register variable definition.

If you want to recompile qsort or other source files that do not actually use your global register variable, so that
they will not use that register for any other purpose, then it suffices to specify the compiler command-line option
-ffixed-reg. You need not actually add a global register declaration to their source code.

A function that can alter the value of a global register variable cannot safely be called from a function compiled
without this variable, because it could clobber the value the caller expects to find there on return. Therefore, the
function that is the entry point into the part of the program that uses the global register variable must explicitly save
and restore the value that belongs to its caller.

The library function longjmp will restore each global register variable to the value it had at the time of the setjmp.

All global register variable declarations must precede all function definitions. If such a declaration appears after
function definitions, the register may be used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no means to supply initial
contents for a register.

27.2.2 Specifying Registers for Local Variables
You can define a local register variable with a specified register like this:

register int *foo asm ("w8");
Here w8 is the name of the register that should be used. Note that this is the same syntax used for defining global
register variables, but for a local variable it would appear within a function.

Defining such a register variable does not reserve the register; it remains available for other uses in places where
flow control determines the variable’s value is not live. Using this feature may leave the compiler too few available
registers to compile certain functions.

This option does not ensure that the compiler will generate code that has this variable in the register you specify at all
times. You may not code an explicit reference to this register in an asm statement and assume it will always refer to
this variable.

Assignments to local register variables may be deleted when they appear to be unused. References to local register
variables may be deleted, moved or simplified.

27.3 Changing Non-Auto Variable Allocation
Another way to locate data is by placing the variable into a user-defined section, and specifying the starting address
of that section in a custom linker script. This is done as follows:

Deprecated Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 258

1. Modify the data declaration in the C source to specify a user-defined section.
2. Add the user-defined section to a custom linker script file to specify the starting address of the section.

For example, to locate the variable Mabonga at address 0x1000 in data memory, first declare the variable as follows
in the C source:

int __attribute__((__section__(".myDataSection"))) Mabonga = 1;
The section attribute specifies that the variable should be placed in a section named .myDataSection, rather than
the default .data section. It does not specify where the user-defined section is to be located. Again, that must be
done in a custom linker script, as follows. Using the device-specific linker script as a base, add the following section
definition:

.myDataSection 0x1000 :
 {
 *(.myDataSection);
 } >data

This specifies that the output file should contain a section named .myDataSection starting at location 0x1000 and
containing all input sections named .myDataSection. Since, in this example, there is a single variable Mabonga in
that section, then the variable will be located at address 0x1000 in data memory.

27.4 Configuration Settings Using Macros
Note:  Do not use this deprecated method for setting configuration bits with pragma statements used to set
configuration bits (see 8.4. Configuration Bit Access) in the same code.

Configuration Settings macros are provided that can be used to set Configuration bits. For example, to set the FOSC
bit using a macro, the following line of code can be inserted before the beginning of your C source code:

_FOSC(CSW_FSCM_ON & EC_PLL16);
This would enable the external clock, with the PLL set to 16x, and enable clock switching and fail-safe clock
monitoring.

Similarly, to set the FBORPOR bit:

_FBORPOR(PBOR_ON & BORV_27 & PWRT_ON_64 & MCLR_DIS);
This would enable Brown-out Reset at 2.7V, and initialize the Power-up timer to 64 ms, and configure the use of the
MCLR pin for I/O.

Configuration Settings macros are defined in compiler header files for each device. Please refer to your device’s
header files for a complete listing of related macros. Header files are located, by default, in:

<MPLAB XC16 Installation folder>/vx.xx/support/device/h
where vx.xx is the compiler version and device is your 16-bit device family.

Deprecated Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 259

28. Built-in Functions
This appendix lists the built-in functions that are specific to MPLAB XC16 C Compiler.

Built-in functions give the C programmer access to assembler operators or machine instructions that are currently
only accessible using inline assembly, but are sufficiently useful that they are applicable to a broad range of
applications. Built-in functions are coded in C source files syntactically like function calls, but they are compiled
to assembly code that directly implements the function and do not involve function calls or library routines.

28.1 Built-In Functions vs. Inline Assembly
There are a number of reasons why providing built-in functions is preferable to requiring programmers to use inline
assembly. They include the following:

1. Providing built-in functions for specific purposes simplifies coding.
2. Certain optimizations are disabled when inline assembly is used. This is not the case for built-in functions.
3. For machine instructions that use dedicated registers, coding inline assembly while avoiding register allocation

errors can require considerable care. The built-in functions make this process simpler as you do not need to
be concerned with the particular register requirements for each individual machine instruction.

28.2 Built-In Function Descriptions
This section describes the programmer interface to the compiler built-in functions. Since the functions are “built in,”
there are no header files associated with them. Similarly, there are no command-line switches associated with the
built-in functions – they are always available. The built-in function names are chosen such that they belong to the
compiler’s namespace (they all have the prefix __builtin_), so they will not conflict with function or variable names
in the programmer’s namespace.

28.2.1 __builtin_ACCL, __builtin_ACCH, __builtin_ACCU
Description

This function can be used to gain access to the low, high, or upper portion of an accumulator value. For example:

volatile register int value asm(“A”);
int result = __builtin_ACCL(value);
The example result will be the low 16-bits stored in the accumulator which holds value.

These builtins allow access to the parts of an accumulator in a way that is optimizer safe.

Prototype

int __builtin_ACCL(int value);
int __builtin_ACCH(int value);
int __builtin_ACCU(int value);

Argument

value – Integer number to set accumulator value.

Return Value

Returns the low, high or upper portion of the accumulator.

Assembler Operator/ Machine Instruction

None

Error Messages

None

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 260

28.2.2 __builtin_add
Description

Add value to the accumulator specified by result with a shift specified by literal shift. For example:

 volatile register int result asm("A");
 int value;
 result = builtin_add(result,value,0);

If value is held in w0, the following will be generated:

add w0, #0, A
Prototype
int __builtin_add(int Accum,int value, const int shift);
Argument

Accum – Accumulator to add.

value – Integer number to add to accumulator value.

shift – Amount to shift resultant accumulator value.

Return Value

Returns the shifted addition result to an accumulator.

Assembler Operator/ Machine Instruction
add
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• argument 0 is not an accumulator
• the shift value is not a literal within range

28.2.3 __builtin_addab
Description

Add accumulators A and B with the result written back to the specified accumulator.

 volatile register int result asm("A");
 volatile register int B asm("B");

 result = __builtin_addab(result,B);

will generate:

add A
Prototype
int __builtin_addab(int Accum_a, int Accum_b);
Argument

Accum_a – First accumulator to add.

Accum_b – Second accumulator to add.

Return Value

Returns the addition result to an accumulator.

Assembler Operator/ Machine Instruction
add

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 261

Error Messages

An error message will be displayed if the result is not an accumulator register.

28.2.4 __builtin_addr_low, __builtin_addr_high, __builtin_addr
Description

Determine the offset address of a symbol.

Prototype

unsigned int __builtin_addr_low(&symbol);
unsigned int __builtin_addr_high(&symbol);
unsigned int __builtin_addr(&symbol);

Argument

&symbol – The literal address of the symbol

Return Value

Returns the low, high or full address of a symbol, without any adjustment for physical address paging requirements.
Therefore, the values returned represent a literal offset and cannot be used for addressing purposes without
manipulation.

Assembler Operator/ Machine Instruction
addr_low, addr_high, addr
Error Messages

An error message will be displayed if the argument is not a literal address.

28.2.5 __builtin_btg
Description

This function will generate a btg machine instruction.

Some examples include:

int i; /* near by default */
int l attribute((far));

struct foo {
 int bit1:1;
} barbits;

int bar;

void some_bittoggles() {
 register int j asm("w9");
 int k;

 k = i;

 __builtin_btg(&i,1);
 __builtin_btg(&j,3);
 __builtin_btg(&k,4);
 __builtin_btg(&l,11);

 return j+k;
}

Note that taking the address of a variable in a register will produce warning by the compiler and cause the register to
be saved onto the stack (so that its address may be taken); this form is not recommended. This caution only applies
to variables explicitly placed in registers by the programmer.

Prototype
void __builtin_btg(unsigned int *, unsigned int 0xn);

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 262

Argument

* – A pointer to the data item for which a bit should be toggled.

0xn – A literal value in the range of 0 to 15.

Return Value

Returns a btg machine instruction.

Assembler Operator/ Machine Instruction
btg
Error Messages

An error message will be displayed if the parameter values are not within range.

28.2.6 __builtin_clr
Description

Clear the specified accumulator.

For example:

volatile register int result asm("A");
result = __builtin_clr();
will generate:

clr A
Prototype:
nt __builtin_clr(void);
Argument

None

Return Value

Returns the cleared value result to an accumulator.

Assembler Operator/ Machine Instruction
clr
Error Messages

An error message will be displayed if the result is not an accumulator register.

28.2.7 __builtin_clr_prefetch
Description

Clear an accumulator and prefetch data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr and xval are ignored,
but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr and yval are ignored,
but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

 volatile register int result asm("A");
 volatile register int B asm("B");

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 263

 int x_memory_buffer[256]
 __attribute__((space(xmemory)));
 int y_memory_buffer[256]
 __attribute__((space(ymemory)));
 int *xmemory;
 int *ymemory;
 int awb;
 int xVal, yVal;

 xmemory = x_memory_buffer;
 ymemory = y_memory_buffer;
 result = __builtin_clr(&xmemory, &xVal, 2,
 &ymemory, &yVal, 2, &awb, B);

might generate:

clr A, [w8]+=2, w4, [w10]+=2, w5, w13
The compiler may need to spill w13 to ensure that it is available for the write-back. It may be recommended to users
that the register be claimed for this purpose.

After this instruction:

result will be cleared

xVal will contain x_memory_buffer[0]
yVal will contain y_memory_buffer[0]
xmemory and ymemory will be incremented by 2, ready for the next mac operation

Prototype

int __builtin_clr_prefetch(
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB,
 int AWB_accum);

Argument

xptr – Integer pointer to x prefetch

xval – Integer value of x prefetch

xincr – Integer increment value of x prefetch

yptr – Integer pointer to y prefetch

yval – Integer value of y prefetch

yincr – Integer increment value of y prefetch

AWB – Accumulator write back location

AWB_accum – Accumulator to write back

Return Value

Returns the cleared value result to an accumulator.

Assembler Operator/ Machine Instruction
clr
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator and AWB is not null

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 264

28.2.8 __builtin_clrwdt
Description

Clear watchdog timer.

Prototype
void __builtin_clrwdt(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction
clrwdt
Error Messages

None

28.2.9 __builtin_dataflashoffset
Description

Returns the offset of the dataflash object whose address is given as a parameter. The argument p must be the
address of an object in dataflash space; otherwise an error message is produced and the compilation fails. See the
space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_dataflashoffset(const void *p);
Argument

p = object address.

Return Value

Returns the offset of the dataflash object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
tbloffset
Error Messages

The following error message is produced when this function is used incorrectly: "Argument to
__builtin_dataflashoffset() is not the address of an object in dataflash space." The
argument must be an explicit object address. For example, if obj is object in dataflash space, the following syntax is
valid: unsigned offset = __builtin_dataflashoffset(&obj);

28.2.10 __builtin_disable_interrupts
Description

Disable global interrupts.

Prototype
void __builtin_disable_interrupts(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 265

Device dependent. Some devices have an enable or disable bit but other require a code solution.

Error Messages

None

28.2.11 __builtin_disi
Description

Disable all interrupts for a specified number of instruction cycles. See 16.6. Enabling/Disabling Interrupts.

Will emit the specified DISI instruction at the point it appears in the source program: disi #<disi_count>
Prototype
void __builtin_disi(int disi_count);
Argument

disi_count instruction cycle count. Must be a literal integer between 0 and 16383.

Return Value

N/A

Assembler Operator/ Machine Instruction
disi.f

28.2.12 __builtin_divf
Description

Computes the quotient num / den. A math error exception occurs if den is zero. Function arguments are signed, as is
the function result.

Prototype
signed int __builtin_divf(signed int num, signed int den);
Argument

num – numerator

den – denominator

Return Value

Returns the signed integer value of the quotient num / den.

Assembler Operator/ Machine Instruction
div.f

28.2.13 __builtin_divmodsd
Description

Issues the 16-bit architecture’s native signed divide support with the same restrictions given in the “dsPIC30F/33F
Programmer’s Reference Manual” (DS70000157). Notably, if the quotient does not fit into a 16-bit result, the results
(including remainder) are unexpected. This form of the built-in function will capture both the quotient and remainder.

Prototype

signed int __builtin_divmodsd(
signed long dividend, signed int divisor,
 signed int *remainder);

Argument

dividend – number to be divided

divisor – number to divide by

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 266

remainder – pointer to remainder

Return Value

Quotient and remainder.

Assembler Operator/ Machine Instruction
divmodsd
Error Messages

None

28.2.14 __builtin_divmodud
Description

Issues the 16-bit architecture’s native unsigned divide support with the same restrictions given in the “dsPIC30F/33F
Programmer’s Reference Manual” (DS70000157). Notably, if the quotient does not fit into a 16-bit result, the results
(including remainder) are unexpected. This form of the built-in function will capture both the quotient and remainder.

Prototype

unsigned int __builtin_divmodud(
unsigned long dividend, unsigned int divisor,
 unsigned int *remainder);

Argument

dividend – number to be divided

divisor – number to divide by

remainder – pointer to remainder

Return Value

Quotient and remainder.

Assembler Operator/ Machine Instruction
divmodud
Error Messages

None

28.2.15 __builtin_divsd
Description

Computes the quotient num / den. A math error exception occurs if den is zero. Function arguments are signed, as is
the function result. The command-line option -Wconversions can be used to detect unexpected sign conversions.

Prototype
int __builtin_divsd(const long num, const int den);
Argument

num – numerator

den – denominator

Return Value

Returns the signed integer value of the quotient num / den.

Assembler Operator/ Machine Instruction
div.sd

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 267

28.2.16 __builtin_divud
Description

Computes the quotient num / den. A math error exception occurs if den is zero. Function arguments are unsigned,
as is the function result. The command-line option -Wconversions can be used to detect unexpected sign
conversions.

Prototype

unsigned int __builtin_divud(const unsigned long num, const unsigned int den);

Argument

num – numerator

den – denominator

Return Value

Returns the unsigned integer value of the quotient num / den.

Assembler Operator/ Machine Instruction
div.ud

28.2.17 __builtin_dmaoffset
Description

Obtains the offset of a symbol within DMA memory.

For example:

 unsigned int result;
 char buffer[256] __attribute__((space(dma)));
 result = __builtin_dmaoffset(&buffer);

Might generate:

mov #dmaoffset(buffer), w0
Prototype
unsigned int __builtin_dmaoffset(const void *p);
Argument

*p – pointer to DMA address value

Return Value

Returns the offset to a variable located in DMA memory.

Assembler Operator/ Machine Instruction
dmaoffset
Error Messages

An error message will be displayed if the parameter is not the address of a global symbol.

28.2.18 __builtin_dmapage
Description

Obtains the page number of a symbol within DMA memory.

For example:

 unsigned int result;
 char buffer[256] __attribute__((space(dma)));

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 268

 result = __builtin_dmapage(&buffer);

Might generate:

mov #dmapage(buffer), w0
Prototype
unsigned int __builtin_dmapage(const void *p);
Argument

*p – pointer to DMA address value

Return Value

Returns the page number of a variable located in DMA memory.

Assembler Operator/ Machine Instruction
dmapage
Error Messages

An error message will be displayed if the parameter is not the address of a global symbol.

28.2.19 __builtin_ed
Description

Squares sqr, returning it as the result. Also prefetches data for future square operation by computing **xptr -
**yptr and storing the result in *distance.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

 volatile register int result asm("A");
 int *xmemory, *ymemory;
 int distance;

 result = __builtin_ed(distance,
 &xmemory, 2,
 &ymemory, 2,
 &distance);

might generate:

ed w4*w4, A, [w8]+=2, [W10]+=2, w4
Prototype

int __builtin_ed(int sqr, int **xptr, int xincr, int **yptr, int yincr, int *distance);

Argument

sqr – Integer squared value.

xptr – Integer pointer to pointer to x prefetch.

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yincr – Integer increment value of y prefetch.

distance – Integer pointer to distance.

Return Value

Returns the squared result to an accumulator.

Assembler Operator/ Machine Instruction

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 269

ed
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• xptr is null
• yptr is null
• distance is null

28.2.20 __builtin_edac
Description

Squares sqr and sums with the nominated accumulator register, returning it as the result. Also prefetches data for
future square operation by computing **xptr - **yptr and storing the result in *distance.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

 volatile register int result asm("A");
 int *xmemory, *ymemory;
 int distance;

 result = __builtin_ed(result, distance,
 &xmemory, 2,
 &ymemory, 2,
 &distance);

might generate:

edac w4*w4, A, [w8]+=2, [W10]+=2, w4
Prototype

int __builtin_edac(int Accum, int sqr,
 int **xptr, int xincr, int **yptr, int yincr,
 int *distance);

Argument

Accum – Accumulator to sum.

sqr – Integer squared value.

xptr – Integer pointer to pointer to x prefetch.

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yincr – Integer increment value of y prefetch.

distance – Integer pointer to distance.

Return Value

Returns the squared result to specified accumulator.

Assembler Operator/ Machine Instruction

edac

Error Messages

An error message will be displayed if:
• the result is not an accumulator register
• Accum is not an accumulator register

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 270

• xptr is null
• yptr is null
• distance is null

28.2.21 __builtin_edsoffset
Description

Returns the eds page offset of the object whose address is given as a parameter. The argument p must be the
address of an object in an Extended Data Space (EDS); otherwise an error message is produced and the compilation
fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_edsoffset(const void *p);
Argument

p – object address

Return Value

Returns the eds page number offset of the object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
edsoffset
Error Messages

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_edsoffset() is not the address of an object in extended data space.”

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_edsoffset(&obj);

28.2.22 __builtin_edspage
Description

Returns the eds page number of the object whose address is given as a parameter. The argument p must be the
address of an object in an Extended Data Space (EDS); otherwise an error message is produced and the compilation
fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_edspage(const void *p);
Argument

p – object address

Return Value

Returns the eds page number of the object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
edspage
Error Messages

The following error message is produced when this function is used incorrectly: “Argument to
__builtin_edspage() is not the address of an object in extended data space.”

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_edspage(&obj);

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 271

28.2.23 __builtin_enable_interrupts
Description

Enable global interrupts.

Prototype
void __builtin_enable_interrupts(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction

Device dependent. Some devices have an enable or disable bit but other require a code solution.

Error Messages

None

28.2.24 __builtin_fbcl
Description

Finds the first bit change from left in value. This is useful for dynamic scaling of fixed-point data. For example:

 int result, value;
 result = __builtin_fbcl(value);

might generate:

fbcl w4, w5
Prototype
int __builtin_fbcl(int value);
Argument

value – Integer number to check for change.

Return Value

Returns a literal value sign extended to represent the number of bits to shift left.

Assembler Operator/ Machine Instruction
fbcl
Error Messages

None

28.2.25 __builtin_flim
Description

Force (Signed) Data Range Limit. Simultaneously compares a 16-bit signed data value to a maximum signed limit
value and a minimum signed limit value.

If the data value is greater than the maximum, the data value is set to the maximum value.

If the data value is less than the minimum, the data value is set to the minimum value.

If the data value is within the maximum-minimum values, the data value is not changed.

Prototype
int __builtin_flim(int value, int high, int low);

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 272

Argument

value – Data value

high – Maximum limit value

low – Minimum limit value

Return Value

Returns value clamped between high and low.

Assembler Operator/ Machine Instruction
flim
Error Messages

None

28.2.26 __builtin_flim_excess
Description

Force (Signed) Data Range Limit with Limit Excess Result. Simultaneously compares a 16-bit signed data value to a
maximum signed limit value and a minimum signed limit value.

Return the sign of the excess value.

Prototype
int __builtin_flim(int value, int high, int low, int *excess):
Argument

value – Data value

high – Maximum limit value

low – Minimum limit value

excess – excess over limit

Assembler Operator/ Machine Instruction

flim.v (when used with __builtin_flimv_excess)

Error Messages

None

28.2.27 __builtin_flimv_excess
Description

Force (Signed) Data Range Limit with Limit Excess Result. Simultaneously compares a 16-bit signed data value to a
maximum signed limit value and a minimum signed limit value.

Return the amount of the excess value.

Prototype
int __builtin_flimv_excess(int value, int high, int low, int *excess);
Argument

value – Data value

high – Maximum limit value

low – Minimum limit value

excess – excess over limit

Return Value

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 273

Return the value of the excess.

Assembler Operator/ Machine Instruction

flim.v (when used with __builtin_flim_excess)

Error Messages

None

28.2.28 __builtin_get_isr_state
Description

Determine the current CPU interrupt state.

Prototype
unsigned int __builtin_get_isr_state(void);
Argument

None

Return Value

Returns an integer value specifying the current CPU interrupt state.

Assembler Operator/ Machine Instruction
get_isr_state
Error Messages

None

28.2.29 __builtin_lac
Description

Shifts value by shift (a literal between -8 and 7) and returns the value to be stored into the accumulator register. For
example:

 volatile register int result asm("A");
 int value;
 result = __builtin_lac(value,3);

Prototype
int __builtin_lac(int value, int shift);
Argument

value – Integer number to be shifted.

shift – Literal amount to shift.

Return Value

Returns the shifted result to an accumulator.

Assembler Operator/ Machine Instruction
lac
Error Messages

An error message will be displayed if: the result is not an accumulator register the shift value is not a literal within
range

28.2.30 __builtin_lacd
Description

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 274

Shifts a value by shift and returns the value to be stored into the accumulator register. For example:

 volatile register int result asm("A");
 long value;
 result = __builtin_lacd(value,3);

Prototype
int __builtin_lacd(long value, unsigned int shift);
Argument

value – Long integer number to be shifted.

shift – Literal amount to shift between -16 and 15.

Return Value

Returns the shifted result to an accumulator.

Assembler Operator/ Machine Instruction

None

Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• the shift value is not a literal within range

28.2.31 __builtin_mac
Description

Computes a x b and sums with accumulator; also prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr and xval are ignored,
but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr and yval are ignored,
but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

 volatile register int result asm("A");
 volatile register int B asm("B");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mac(result, xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0, B);

might generate:

mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype

int __builtin_mac(int Accum, int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr,
 int *AWB, int AWB_accum);

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 275

Argument

Accum – Accumulator to sum.

a – Integer multiplicand.

b – Integer multiplier.

xptr – Integer pointer to pointer to x prefetch.

xval – Integer pointer to value of x prefetch.

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yval – Integer pointer to value of y prefetch.

yincr – Integer increment value of y prefetch.

AWB – Accumulator write back location.

AWB_accum – Accumulator to write back.

Return Value

Returns the value of accumulator plus the result of a x b.

Assembler Operator/ Machine Instruction
mac
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• Accum is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator register and AWB is not null

28.2.32 __builtin_modsd
Description

Issues the 16-bit architecture’s native signed divide support with the same restrictions given in the “dsPIC30F/33F
Programmer’s Reference Manual” (DS70157). Notably, if the quotient does not fit into a 16-bit result, the results
(including remainder) are unexpected. This form of the built-in function will capture only the remainder.

Prototype
signed int __builtin_modsd(signed long dividend,
signed int divisor);
Argument

dividend – number to be divided

divisor – number to divide by

Return Value

Remainder.

Assembler Operator/ Machine Instruction
modsd
Error Messages

None

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 276

28.2.33 __builtin_modud
Description

Issues the 16-bit architecture’s native unsigned divide support with the same restrictions given in the “dsPIC30F/33F
Programmer’s Reference Manual” (DS70157). Notably, if the quotient does not fit into a 16-bit result, the results
(including remainder) are unexpected. This form of the built-in function will capture only the remainder.

Prototype
unsigned int __builtin_modud(unsigned long dividend,
unsigned int divisor);
Argument

dividend – number to be divided

divisor – number to divide by

Return Value

Remainder.

Assembler Operator/ Machine Instruction

modud

Error Messages

None

28.2.34 __builtin_movsac
Description

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr and xval are ignored,
but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr and yval are ignored,
but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 __builtin_movsac(&xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0, 0);

might generate:

movsac A, [w8]+=2, w4, [w10]+=2, w5
Prototype

void __builtin_movsac(
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB
 int AWB_accum);

Argument

xptr – Integer pointer to pointer to x prefetch.

xval – Integer pointer to value of x prefetch.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 277

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yval – Integer pointer to value of y prefetch.

yincr – Integer increment value of y prefetch.

AWB – Accumulator write back location.

AWB_accum – Accumulator to write back.

Return Value

None

Assembler Operator/ Machine Instruction
movsac
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator register and AWB is not null

28.2.35 __builtin_mpy
Description

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr and xval are ignored,
but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr and yval are ignored,
but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mpy(xVal, yVal, &xmemory, &xVal, 2, &ymemory, &yVal, 2);

might generate:

mpy w4*w5, A, [w8]+=2, w4, [w10]+=2, w5
Prototype

int __builtin_mpy(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr);

Argument

a – Integer multiplicand.

b – Integer multiplier.

xptr – Integer pointer to pointer to x prefetch.

xval – Integer pointer to value of x prefetch.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 278

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yval – Integer pointer to value of y prefetch.

yincr – Integer increment value of y prefetch.

AWB – Integer pointer to accumulator selection.

Return Value

Returns the value of a x b.

Assembler Operator/ Machine Instruction
mpy
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null

28.2.36 __builtin_mpyn
Description

Computes -a x b ; also prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr and xval are ignored,
but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr and yval are ignored,
but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

For example:

 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mpy(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2);

might generate:

mpy.n w4*w5, A, [w8]+=2, w4, [w10]+=2, w5
Prototype

int __builtin_mpyn(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr);

Argument

a – Integer multiplicand.

b – Integer multiplier.

xptr – Integer pointer to pointer to x prefetch.

xval – Integer pointer to value of x prefetch.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 279

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yval – Integer pointer to value of y prefetch.

yincr – Integer increment value of y prefetch.

AWB – Integer pointer to accumulator selection.

Return Value

Returns the value of -a x b.

Assembler Operator/ Machine Instruction
mpyn
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null

28.2.37 __builtin_msc
Description

Computes a x b and subtracts from accumulator; also prefetches data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which case the values of xincr and xval are ignored,
but required.

yptr may be null to signify no Y prefetch to be performed, in which case the values of yincr and yval are ignored,
but required.

xval and yval nominate the address of a C variable where the prefetched value will be stored.

xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.

If AWB is non null, the other accumulator will be written back into the referenced variable.

For example:

 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_msc(result, xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0, 0);

might generate:

msc w4*w5, A, [w8]+=2, w4, [w10]+=2, w5
Prototype

int __builtin_msc(int Accum, int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB,
 int AWB_accum);

Argument

Accum – Accumulator to subtract.

a – Integer multiplicand.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 280

b – Integer multiplier.

xptr – Integer pointer to pointer to x prefetch.

xval – Integer pointer to value of x prefetch.

xincr – Integer increment value of x prefetch.

yptr – Integer pointer to pointer to y prefetch.

yval – Integer pointer to value of y prefetch.

yincr – Integer increment value of y prefetch.

AWB – Accumulator write back location.

AWB_accum – Accumulator to write back.

Return Value

Returns the value of accumulator minus the result of a x b.

Assembler Operator/ Machine Instruction
msc
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• Accum is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator register and AWB is not null

28.2.38 __builtin_mulss
Description

Computes the product p0 x p1. Function arguments are signed integers, and the function result is a signed long
integer. The command-line option -Wconversions can be used to detect unexpected sign conversions.

For example:

 volatile register int a asm("A");
 signed long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_mulss(p0,p1);
 a = __builtin_mulss(p0,p1);

Prototype
signed long __builtin_mulss(const signed int p0, const signed int p1);
Argument

p0 – multiplicand

p1 – multiplier

Return Value

Returns the signed long integer value of the product p0 x p1. The value can either be returned into a variable of type
signed long or directly into an accumulator register.

Assembler Operator/ Machine Instruction
mul.ss

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 281

28.2.39 __builtin_mulsu
Description

Computes the product p0 x p1. Function arguments are integers with mixed signs, and the function result is a signed
long integer. The command-line option -Wconversions can be used to detect unexpected sign conversions. This
function supports the full range of addressing modes of the instruction, including immediate mode for operand p1.

For example:

 volatile register int a asm("A");
 signed long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_mulsu(p0,p2);
 a = __builtin_mulsu(p0,p2);

Prototype
signed long __builtin_mulsu(const signed int p0, const unsigned int p1);
Argument

p0 – multiplicand

p1 – multiplier

Return Value

Returns the signed long integer value of the product p0 x p1. The value can either be returned into a variable of type
signed long or directly into an accumulator register.

Assembler Operator/ Machine Instruction
mul.su

28.2.40 __builtin_mulus
Description

Computes the product p0 x p1. Function arguments are integers with mixed signs, and the function result is a signed
long integer. The command-line option -Wconversions can be used to detect unexpected sign conversions. This
function supports the full range of addressing modes of the instruction.

For example:

 volatile register int a asm("A");
 signed long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_mulus(p2,p0);
 a = __builtin_mulus(p2,p0);

Prototype
signed long __builtin_mulus(const unsigned int p0, const signed int p1);
Argument

p0 – multiplicand

p1 – multiplier

Return Value

Returns the signed long integer value of the product p0 x p1. The value can either be returned into a variable of type
signed long or directly into an accumulator register.

Assembler Operator/ Machine Instruction
mul.us

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 282

28.2.41 __builtin_muluu
Description

Computes the product p0 x p1. Function arguments are unsigned integers, and the function result is an unsigned
long integer. The command-line option -Wconversions can be used to detect unexpected sign conversions. This
function supports the full range of addressing modes of the instruction, including immediate mode for operand p1.

For example:

 volatile register int a asm("A");
 unsigned long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_muluu(p2,p3);
 a = __builtin_muluu(p2,p3);

Prototype
unsigned long __builtin_muluu(const unsigned int p0, const unsigned int p1);
Argument

p0 – multiplicand

p1 – multiplier

Return Value

Returns the signed long integer value of the product p0 x p1. The value can either be returned into a variable of type
unsigned long or directly into an accumulator register.

Assembler Operator/ Machine Instruction
mul.uu

28.2.42 __builtin_nop
Description

Generates a nop instruction.

Prototype
void __builtin_nop(void);
Argument

None

Return Value

Returns a no operation (nop).

Assembler Operator/ Machine Instruction
nop

28.2.43 __builtin_popcount
Description

Count the number of 1’s (set bits) in an integer.

Prototype
int __builtin_popcount(unsigned int num);
Argument

num – integer number

Return Value

Returns the number of 1’s found.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 283

Assembler Operator/ Machine Instruction

N/A

28.2.44 __builtin_popcountl
Description

Count the number of 1’s (set bits) in a long integer.

Prototype
int __builtin_nop(unsigned long num);
Argument

num – long integer number

Return Value

Returns the number of 1's found.

Assembler Operator/ Machine Instruction

N/A

28.2.45 __builtin_psvoffset
Description

Returns the psv page offset of the object whose address is given as a parameter. The argument p must be the
address of an object in an EE data, PSV or executable memory space; otherwise an error message is produced and
the compilation fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_psvoffset(const void *p);
Argument

p – object address

Return Value

Returns the psv page number offset of the object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
psvoffset
Error Messages

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_psvoffset() is not the address of an object in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_psvoffset(&obj);

28.2.46 __builtin_psvpage
Description

Returns the psv page number of the object whose address is given as a parameter. The argument p must be the
address of an object in an EE data, PSV or executable memory space; otherwise an error message is produced and
the compilation fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_psvpage(const void *p);
Argument

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 284

p – object address

Return Value

Returns the psv page number of the object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
psvpage
Error Messages

The following error message is produced when this function is used incorrectly: “Argument to
__builtin_psvpage() is not the address of an object in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_psvpage(&obj);

28.2.47 __builtin_pwrsav
Description

Enables/disables PIC32 MCU power saving modes.

Prototype
void __builtin_pwrsav(unsigned int p);
Argument

p 1 = enable, 0 = disable

Return Value

None

Assembler Operator/ Machine Instruction
pwrsav
Error Messages

None

28.2.48 __builtin_readsfr
Description

Reads the Special Function Register (SFR).

Prototype
unsigned int __builtin_readsfr(const void *p);
Argument

p – object address

Return Value

Returns the SFR value.

Assembler Operator/ Machine Instruction
readsfr
Error Messages

If the object address is not in the range of SFR memory space, an error will be produced. Consult your device data
sheet for the memory range.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 285

28.2.49 __builtin_return_address
Description

Returns the return address of the current function, or of one of its callers. For the level argument, a value of 0
yields the return address of the current function, a value of 1 yields the return address of the caller of the current
function, and so forth. When level exceeds the current stack depth, 0 will be returned. This function should only be
used with a non-zero argument for debugging purposes.

Prototype
int __builtin_return_address (const int level);
Argument

level – Number of frames to scan up the call stack.

Return Value

Returns the return address of the current function, or of one of its callers.

Assembler Operator/ Machine Instruction
return_address

28.2.50 __builtin_sac
Description

Shifts a value by shift and returns the value. For example:

 volatile register int value asm("A");
 long result;
 result = __builtin_sac(value,3);

Prototype
long __builtin_sac(int value, int shift);
Argument

value – Integer number to be shifted.

shift – Literal amount to shift between -8 and 7

Return Value

Returns the shifted result.

Assembler Operator/ Machine Instruction

None

Error Messages

An error message will be displayed if: the result is not an accumulator register the shift value is not a literal within
range

28.2.51 __builtin_sacd
Description

Shifts value by shift and returns the value. For example:

 volatile register int value asm("A");
 int result;

 result = __builtin_sacd(value,3);

Might generate:

sacd A, #3, w0
Prototype

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 286

int __builtin_sacd(int value, int shift);
Argument

value – Integer number to be shifted.

shift – Literal amount to shift between -16 and 15

Return Value

Returns the shifted result.

Assembler Operator/ Machine Instruction
sacd
Error Messages

An error message will be displayed if:

• the result is not an accumulator register
• the shift value is not a literal within range

28.2.52 __builtin_sacr
Description

Shifts value by shift and returns the value which is rounded using the rounding mode determined by the
CORCONbits.RND control bit.

For example:

 volatile register int value asm("A");
 int result;

 result = __builtin_sacr(value,3);

Might generate:

sac.r A, #3, w0
Prototype
int __builtin_sacr(int value, int shift);
Argument

value – Integer number to be shifted.

shift – Literal amount to shift between -8 and 7

Return Value

Returns the shifted result to CORCON register.

Assembler Operator/ Machine Instruction
sacr
Error Messages

An error message will be displayed if:
• the result is not an accumulator register
• the shift value is not a literal within range

28.2.53 __builtin_section_begin, __builtin_section_end
Description

Get run-time information about a section beginning or ending address.

Prototype
unsigned long __builtin_section_begin(“section_name”);

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 287

unsigned long __builtin_section_end(“section_name”);
Argument

section_name – name of the section

Return Value

Returns the beginning or ending address of the named section.

Assembler Operator/ Machine Instruction
section_begin
section_end
Error Messages

An error message will be displayed if the named section cannot be found.

28.2.54 __builtin_section_size
__builtin_section_size
Description

Get run-time information about a section’s size.

Prototype
unsigned long __builtin_section_size(“section_name”);
Argument

section_name – name of the section

Return Value

Returns the size of the named section.

Assembler Operator/ Machine Instruction
section_size
Error Messages

An error message will be displayed if the named section cannot be found.

28.2.55 __builtin_set_isr_state
Description

Set the current CPU interrupt state.

Prototype
void __builtin_get_isr_state(unsigned int state);
Argument

state – Integer value specifying the current CPU interrupt state.

Return Value

None

Assembler Operator/ Machine Instruction
set_isr_state
Error Messages

28.2.56 __builtin_sftac
Description

Shifts accumulator by shift. The valid shift range is -16 to 16.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 288

For example:

 volatile register int result asm(“A”);
 int i;

 result = __builtin_sftac(result,i);

Might generate:

sftac A, w0
Prototype
int __builtin_sftac(int Accum, int shift);
Argument

Accum – Accumulator to shift.

shift – Amount to shift.

Return Value

Returns the shifted result to an accumulator.

Assembler Operator/ Machine Instruction
sftac
Error Messages

An error message will be displayed if:
• the result is not an accumulator register
• Accum is not an accumulator register
• the shift value is not a literal within range

28.2.57 __builtin_software_breakpoint
Description

Provides for a software breakpoint. If a debugger is attached, the IDE will halt. If no debugger is attached, the device
will reset.

Prototype
void __builtin_software_breakpoint(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction
break
Error Messages

None

28.2.58 __builtin_subab
Description

Subtracts accumulators A and B with the result written back to the specified accumulator.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 289

For example:

 volatile register int result asm("A");
 volatile register int B asm("B");
 result = __builtin_subab(result,B);

will generate:

sub A
Prototype
int __builtin_subab(int Accum_a, int Accum_b);
Argument

Accum_a – Accumulator from which to subtract.

Accum_b – Accumulator to subtract.

Return Value

Returns the subtraction result to an accumulator.

Assembler Operator/ Machine Instruction
sub
Error Messages

An error message will be displayed if the result is not an accumulator register.

28.2.59 __builtin_swap
Description

For a 16-bit word, swap the bytes in the word; 0x1234 -> 0x3412.

Prototype
uint16_t __builtin_swap(uint16_t word);
Argument

word – 16-bit word

Return Value

Returns the swapped value.

Assembler Operator/ Machine Instruction
swap
Error Messages

None.

28.2.60 __builtin_swap_byte
Description

For a byte, swap the nibbles in the byte; 0x12 -> 0x21.

Prototype
uint8_t __builtin_swap(uint8_t byte);
Argument

byte – byte

Return Value

Returns the swapped value.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 290

Assembler Operator/ Machine Instruction
swap.b
Error Messages

None.

28.2.61 __builtin_tbladdress
Description

Returns a value that represents the address of an object in program memory. The argument p must be the address
of an object in an EE data, PSV or executable memory space; otherwise an error message is produced and the
compilation fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned long __builtin_tbladdress(const void *p);
Argument

p object address

Return Value

Returns an unsigned long value that represents the address of an object in program memory.

Assembler Operator/ Machine Instruction
tbladdress
Error Messages

The following error message is produced when this function is used incorrectly: “Argument to
__builtin_tbladdress() is not the address of an object in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned long page = __builtin_tbladdress(&obj);

28.2.62 __builtin_tbloffset
Description

Returns the table page offset of the object whose address is given as a parameter. The argument p must be the
address of an object in an EE data, PSV or executable memory space; otherwise an error message is produced and
the compilation fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_tbloffset(const void *p);
Argument

p – object address

Return Value

Returns the table page number offset of the object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
tbloffset
Error Messages

The following error message is produced when this function is used incorrectly:

“Argument to __builtin_tbloffset() is not the address of an object in code, psv, or eedata section.”

The argument must be an explicit object address.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 291

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_tbloffset(&obj);

28.2.63 __builtin_tblpage
Description

Returns the table page number of the object whose address is given as a parameter. The argument p must be the
address of an object in an EE data, PSV or executable memory space; otherwise an error message is produced and
the compilation fails. See the space attribute in 10.10. Variable Attributes.

Prototype
unsigned int __builtin_tblpage(const void *p);
Argument

p – object address

Return Value

Returns the table page number of the object whose address is given as a parameter.

Assembler Operator/ Machine Instruction
tblpage
Error Messages

The following error message is produced when this function is used incorrectly: “Argument to
__builtin_tblpage() is not the address of an object in code, psv, or eedata section.”

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the following syntax is valid:

unsigned page = __builtin_tblpage(&obj);

28.2.64 __builtin_tblrdh
Description

Issues the tblrdh.w instruction to read a word from Flash or EEData memory. You must set up the TBLPAG to point to
the appropriate page. To do this, you may make use of __builtin_tbloffset() and __builtin_tblpage().

Please refer to your device data sheet or Family Reference Manual (FRM) for complete details regarding reading and
writing program Flash.

Prototype
unsigned int __builtin_tblrdh(unsigned int offset);
Argument

offset – desired memory offset

Return Value

Contents of the memory address in Flash or EEData memory.

Assembler Operator/ Machine Instruction
tblrdh
Error Messages

None

28.2.65 __builtin_tblrdl
Description

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 292

Issues the tblrdl.w instruction to read a word from Flash or EEData memory. You must set up the
TBLPAG to point to the appropriate page. To do this, you may make use of __builtin_tbloffset() and
__builtin_tblpage().

Please refer to your device data sheet or Family Reference Manual (FRM) for complete details regarding reading and
writing program Flash.

Prototype
unsigned int __builtin_tblrdl(unsigned int offset);
Argument

offset – desired memory offset

Return Value

Contents of the memory address in Flash or EEData memory.

Assembler Operator/ Machine Instruction
tblrdl
Error Messages

None

28.2.66 __builtin_tblwth
Description

Issues the tblwth.w instruction to write a word to Flash or EEData memory. You must set up the
TBLPAG to point to the appropriate page. To do this, you may make use of __builtin_tbloffset() and
__builtin_tblpage().

Please refer to your device data sheet or Family Reference Manual (FRM) for complete details regarding reading and
writing program Flash.

Prototype
void __builtin_tblwth(unsigned int offset
unsigned int data);
Argument

offset – desired memory offset

data – data to be written

Return Value

None

Assembler Operator/ Machine Instruction
tblwth
Error Messages

None

28.2.67 __builtin_tblwtl
Description

Issues the tblrdl.w instruction to write a word to Flash or EEData memory. You must set up the
TBLPAG to point to the appropriate page. To do this, you may make use of __builtin_tbloffset() and
__builtin_tblpage().

Please refer to your device data sheet or Family Reference Manual (FRM) or complete details regarding reading and
writing program Flash.

Prototype

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 293

void __builtin_tblwtl(unsigned int offset
unsigned int data);
Argument

offset – desired memory offset

data – data to be written

Return Value

None

Assembler Operator/ Machine Instruction
tblwtl
Error Messages

None

28.2.68 __builtin_write_CRYOTP
Description

Initiates a write to the Crypto OTP by issuing the correct unlock sequence and setting the CRYWR bit.

Interrupts may need to be disabled for proper operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void __builtin_write_CRYOTP(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction

mov #0x55, Wn
mov Wn, _CRYKEY
mov #0xAA, Wn
mov Wn, _CRYKEY
bset _CRYCON, #0
nop
nop

Error Messages

None

28.2.69 __builtin_write_DISICNT
Description

Enables the Flash for writing by issuing the correct unlock sequence and enabling the Write bit of the DISICNT
register.

Interrupts may need to be disabled for proper operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void __builtin_write_DISICNT(DISI_save);
Argument

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 294

DISI_save - Specified value to save to DISICNT register

Return Value

None

Assembler Operator/ Machine Instruction

Error Messages

None

28.2.70 __builtin_write_NVM
Description

Enables the Flash for writing by issuing the correct unlock sequence and enabling the Write bit of the NVMCON
register.

Interrupts may need to be disabled for proper operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void ___builtin_write_NVM(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction

mov #0x55, Wn
mov Wn, _NVMKEY
mov #0xAA, Wn
mov Wn, _NVMKEY
bset _NVMCON, #15
nop
nop

Error Messages

None

28.2.71 __builtin_write_NVM_secure
Description

Enables the Flash for writing by issuing an unlock sequence specified by two keys and enabling the Write bit of the
NVMCON register. After completion, the two keys are cleared to zero.

Interrupts may need to be disabled for proper operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void __builtin_write_NVM_secure(unsigned int key1, unsigned int key2);
Argument

key1 – first key in the NVM unlock sequence

key2 – second key in the NVM unlock sequence

Return Value

None

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 295

Assembler Operator/ Machine Instruction

Depending on the location of the keys:

mov W0, Wn
mov Wn, _NVMKEY
mov W1, Wn
mov Wn, _NVMKEY
bset _NVMCON, #15
nop
nop

Error Messages

None

28.2.72 __builtin_write_OSCCONH
Description

Unlocks and writes its argument to OSCCONH.

Interrupts may need to be disabled for proper operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void __builtin_write_OSCCONH(unsigned char value);
Argument

value – character to be written

Return Value

None

Assembler Operator/ Machine Instruction*

mov #0x78, w0
mov #0x9A, w1
mov __OSCCON+1, w2
mov.b w0, [w2]
mov.b w1, [w2]
mov.b value, [w2]

Error Messages

None

* The exact sequence may be different.

28.2.73 __builtin_write_OSCCONL
Description

Unlocks and writes its argument to OSCCONL.

Interrupts may need to be disabled for proper operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void __builtin_write_OSCCONL(unsigned char value);
Argument

value – character to be written

Return Value

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 296

None

Assembler Operator/ Machine Instruction*

mov #0x46, w0
mov #0x57, w1
mov __OSCCON, w2
mov.b w0, [w2]
mov.b w1, [w2]
mov.b value, [w2]

Error Messages

None

* The exact sequence may be different.

28.2.74 __builtin_write_PWMSFR
Description

Writes the PWM unlock sequence to the SFR pointed to by PWM_KEY and then writes value to the SFR pointed to by
PWM_sfr

Prototype
void __builtin_write_PWMSFR(volatile unsigned int *PWM_sfr,
unsigned int value, volatile unsigned int *PWM_KEY);
Argument

PWM_sfr – register to be written

value – value to write

PWM_KEY – hardware unlock key location

Return Value

None

Assembler Operator/ Machine Instruction

mov #PWM_KEY, w3
mov #value, w2
mov #0x4321, w1
mov #0xABCD, w0
mov w1,[w3]
mov w0,[w3]
mov w2,[w3]

Error Messages

None

Examples

Example 1:

__builtin_write_PWMSFR(&PWM1CON1, 0x123, &PWM1KEY);
Example 2:

__builtin_write_PWMSFR(&P1FLTACON, 0x123, &PWMKEY);
The choice of PWM_KEY may depend upon architecture.

28.2.75 __builtin_write_RPCON
Description

Initiates a write to RPCON register by issuing the correct unlock sequence and setting the RPCON register. Interrupts
may need to be disabled for proper operation.

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 297

Prototype
void __builtin_write_RPCON(unsigned int value);
Argument

value – Specified value to save to RPCON register

Return Value

None

Assembler Operator/Machine Instruction

mov #0x55, Wn
mov Wn, _NVMKEY
mov #0xAA, Wn
mov Wn, _NVMKEY
mov value, _RPCON

Error Messages

None

28.2.76 __builtin_write_RTCWEN
Description

Used to write to the RTCC Timer by implementing the unlock sequence by writing the correct unlock values to
NVMKEY, and then setting the RTCWREN bit of RCFGCAL SFR. Interrupts may need to be disabled for proper
operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype
void __builtin_write_RTCWEN(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction

mov #0x55,w0
mov w0,_NVMKEY
mov #0xAA,w0
mov w0,_NVMKEY
bset _RCFGCAL,#13
nop
nop

Error Messages

None

28.2.77 __builtin_write_RTCC_WRLOCK
Description

Used to write to the RTCC Timer by implementing the unlock sequence by writing the correct unlock values to
NVMKEY, and then setting the RTCWREN bit of RCFGCAL SFR. Interrupts may need to be disabled for proper
operation.

This builtin function can be used as a part of a complex sequence discussed in your device data sheet or Family
Reference Manual (FRM). See these documents for more information.

Prototype

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 298

void __builtin_write_RTCC_WRLOCK(void);
Argument

None

Return Value

None

Assembler Operator/ Machine Instruction

mov #0x55,w0
mov w0,_NVMKEY
mov #0xAA,w0
mov w0,_NVMKEY
bclr _RTCCON1L,#11
nop
nop

Error Messages

None

Built-in Functions

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 299

29. Document Revision History
The following is a list of changes by version to this document.

Note:  Some revision letters are not used, such as I and O, as they can be confused for numbers in some fonts, and
so were skipped.

29.1 Revision M (January 2022)
• Removed two references to an example folder no longer in the compiler install directory.
• Section 7.6.1 “Options Specific to 16-Bit Devices”: Added option -mdfp.
• Section 7.6.6 “Options for Controlling Optimization”: Option -O2 available to all licenses (PRO and Free.)
• Section 7.6.12 “Miscellaneous Options”: -fnofallback to --nofallback.
• Section 10.5.2 “Bitfields in Structures”: Graphics added to clarify first example; unsigned changed to

unsigned int in three examples.
• Section 12.14.3 “Default Memory Models”: New section to describe generated information on project memory

models used.
• Section 18.2, Table 18-1 “Constraint Letters Supported by the Compiler” updated for zu and zs constraints.
• Chapter 20. “Optimizations”: Option -O2 available to all licenses (PRO and Free.)
• Section 28.2.9 __builtin_dataflashoffset updated to be similar to __builtin_tbloffset.
• Sections 28.2.10 __builtin_disable_interrupts and 28.2.23 __builtin_disable_interrupts

updated Description and Assembler Operator/ Machine Instruction.
• Section 28.2.57 __builtin_software_breakpoint updated Assembler Operator/ Machine Instruction.

29.2 Revision L (February 2021)
• Section 8.8 “Stack Usage Guidance”: Added section on Stack Usage Guidance analytic tool for use on

command line and in MPLAB X IDE.
• Section 15.7 “Function Call Conventions”: Fixed typo. DBRPAG changed to DSRPAG.
• Section 15.1.2 “Function Attributes”: Update that attributes auto_psv and no_auto_psv can be combined with

attributes boot and secure in addition to interrupt.

29.3 Revision K (June 2020)
• Section 19.4 “Predefined Macro Names”: Added macros: __OPTIMIZATION_ LEVEL__,

__OPTIMIZE_SIZE__, __LARGE_ARRAYS__, __HAS_AUXFLASH__, and eight representing
__DeviceFamily__.

• Appendix G. “Built-in Functions.”: Added built-in functions: __builtin_write_RPCON, __builtin_flim,
__builtin_flim_excess, __builtin_flimv_excess, __builtin_swap, __builtin_popcount,
__builtin_popcountl.

29.4 Revision J (December 2019)
• The guidance for using -mlarge-arrays has been changed to “used when allocating arrays greater than or

equal to 32K” in Section 5.7.1 “Options Specific to 16-Bit Devices” and Section 10.3.2.3 “Non-Auto Variable Size
Limits”

• Section 5.7.1 “Options Specific to 16-Bit Devices”: Added option -mcodecov for MPLAB Code Coverage.
• Section 13.8 “Function Call Conventions”: In the second bullet, “caller” changed to “callee.”
• Appendix G. “Built-in Functions.”: For __builtin_lacd and __builtin_sacd, the argument “shift” value is

changed from [-16:15] to [-8:7].

Document Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 300

29.5 Revision H (November 2018)
• Microchip website addresses now using https instead of http.
• Section 3.6.20 “How Do I Stop My Project's Checksum From Changing?” - added section to “How To’s” chapter.
• Section 10.15 “Memory Models” - Table 10-1 content updated.
• Section 13.7 “Memory Models” - “Near and Far Code” content moved to Section 10.15 “Memory Models” and a

reference to this section added.

29.6 Revision G (February 2018)
• Removed reference to obsolete Standard (STD) license.
• Section 3.3.7 “How Do I Build Libraries?” - updated for new 5.4.1.3.
• Section 3.4.2.5 “Are There Any SFRs Usage Considerations?” added section.
• Section 3.6.2 “Why Can’t I Debug my Code after I Optimize?” - updated for new 18.4.
• Section 3.6.6 “What are the Speed vs. Size Tradeoffs?” added section.
• Section 4.5.3 “xc16-gcc (16-Bit C Compiler)” - Table 4-5 updated and footnotes added, -mnear-char removed.

Table 4-6 updated to remove-mno-override-inline.
• Section 4.5.4 “xc16-ld (16-Bit Linker)” - corrected definition for “Use Local Stack”.
• Section 5.2.1 “Drive Command-Line Format” - added linker script to command-line example to avoid

inconsistent warnings depending on device.
• Section 5.4.1.2 “User-Defined Libraries” - moved some content to 5.4.1.3.
• Section 5.4.1.3 “User-Defined Libraries Development” - added section.
• Section 5.7.1 “Options Specific to 16-Bit Devices” - added -mno-eds-warn, -mno-file, -moptimize-page-

setting, -mlegacy-libc, -mprint-builtins, -mprint-devices, -mprint-mchp-search-dirs, -
mno-errata, -msmart-io-format, -msfr-warn.

• Section 5.7.6.3 “Options that Specify Machine-Independent Flags” - added -fnofallback.
• Section 5.7.4.1 “Options to Control the Amount and Types of Warnings” - remove from Table 5-8 -pedantic,

-pedantic-errors and -Wunused-parameter.
• Section 5.7.4.2 “Options that are not Implied by -Wall” - added -Wextra; fixed -Wlarger-than=len.
• Section 5.7.7 “Options for Controlling the Preprocessor” - added -iquote.
• Section 6.3.2 “Device Support Information” - added section.
• Section 6.8 “Using EDS” - added section.
• Section 8.11 “Variable Attributes” - first paragraph updated; clarified persistent attribute usage.
• Section 13.2.2 “Function Attributes” - added optimize attribute.
• Section 14.4 “Specifying the Interrupt Vector” - changed to AIVTDIS = ON.
• Section 18.3 “How to Enable Optimization” - added section.
• Section 18.4 “Using Optimizations” - added section.
• Section 19.4.6 “Other Macros” - __LINE__ macro description corrected.
• Appendix G. “Built-in Functions.” - __builtin_write_RTCC_WRLOCK does not replace

__builtin_write_RTCWEN, corrected; __builtindisi corrected to __builtin_disi;
__builtin_movsac and __builtin_sac return value corrected;

29.7 Revision F (July 2016)
• Updated DS numbers for XC16 ASM/LINK user’s guide and 16-bit libraries.
• Optimization information updated per license - Chapter 18. “Optimizations.”, Section 4.5.3 “xc16-gcc (16-Bit C

Compiler)” (Table 4-6), and Section 5.7.6 “Options for Controlling Optimization”
• Section 6.5 “Configuration Bit Access” - Added “Configuration Settings Using Macros” moved to Appendix F.

“Deprecated Features.”
• Complex numbers not supported so removed references to support (Section 8.8).

Document Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 301

• Section 10.14 “Co-resident Applications” - Co-resident applications information and reference.
• Section 14.7 “Enabling/Disabling Interrupts” - Built-in name corrected, __write_to_IEC() documented.
• Section 19.4.6 “Other Macros” - Updated __LINE__ description.
• Appendix G. “Built-in Functions.” - Added __builtin_addr_low, __builtin_addr_high,

__builtin_addr, __builtin_clrwdt, __builtin_ lacd, __builtin_sacd, __builtin_ACCL,
__builtin_ACCH, __builtin_ACCU, __builtin_write_DISICNT, __builtin_pwrsav.
Updated __builtin_movsac, __builtin_sacr, __builtin_write_RTCC_WRLOCK - replaces
__builtin_write_RTCWEN.

29.8 Revision E (December 2014)
• Throughout - Remove mention of MPLAB IDE v8.xx, except where necessary.
• Preface - Update to add “How To’s” chapter reference and remove “XC16 Toolchain and MPLAB IDE v8” chapter

reference.
• Section 2.5.10 “Interrupt Functions” - corrected a function.
• Section 4.2 “MPLAB X IDE and Tools Installation” - updated the licensing information.
• Section 4.5 “Project Setup” - updated compiler options in MPLAB X IDE.
• Section 5.4.1.2 “User-Defined Libraries” - added information on contents.
• Section 5.7.1 “Options Specific to 16-Bit Devices” - added --partition option for dual partition devices.
• Section 5.7.4 “Options for Controlling Warnings and Errors” - split into subsections. Took information from the

table and made it into a subsection for -W.
• Section 5.7.6 “Options for Controlling Optimization”- split into subsections. Added info to made a subsection

for --ffunction-section option. Added a cross-reference from Section 14.3 “Writing an Interrupt Service
Routine”.

• Section 6.3.3 “Compile Time Memory Information” - added section Added dataflash argument to that space
attribute.

• Section 10.3.1 “Auto and Non-Auto Variables vs. Local and Global Variables” section created from the last two
paragraphs of Section 10.3.

• Section 13.2.2 “Function Attributes” and Section 14.5.2 “context Attribute” - added information for the context
attribute.

• Section 13.8 “Function Call Conventions” - updated the table for EDS pointer requirements.
• Section 14.3.3 “Coding ISRs”, Section 14.4.1 “Interrupt Vector Usage” and Section 14.5.1 “Assembly and ISRs”

- updated code snippets.
• Section 14.4 “Specifying the Interrupt Vector” - added information about movable alternate interrupt tables, and

split remaining text into two subsections.
• Section 16.3 “Using Inline Assembly Language” - added compiler constraint letters.
• Section 19.4.5 “Device Features Macros” - clarified __HAS_DMA__ macros.
• Appendix G. “Built-in Functions.” - added __builtin_write_NVM_secure

and __builtin_software_breakpoints; updated __builtin_enable_interrupts and
__builtin_disable_interrupts.

29.9 Revision D (August 2014)
• Added Chapter 3. “How To’s.”
• Removed Chapter 4. “XC16 Toolchain and MPLAB IDE v8”.

29.10 Revision C (September 2013)
• Renamed MPLAB Assembler/Linker for PIC24 MCUs and dsPIC DSCs (and variants) to MPLAB XC16

Assembler/Linker.
• Changed executable output from .out to .elf.

Document Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 302

• Updated MDB information in Section 1.4 “Compiler and Other Development Tools”
• Added Chapter 4. “XC16 Toolchain and MPLAB X IDE.” and Chapter 4. “XC16 Toolchain and MPLAB IDE v8”.
• Added options under Section 5.7 “Driver Option Descriptions”: -menable-fixed and -fsigned-bitfields.
• Added information on using #pragmas under Section 6.5 “Configuration Bit Access”
• Added fixed-point arithmetic support:

– Chapter 9. “Fixed-Point Arithmetic Support.”
– Section 8.4 “Floating-Point Data Types”
– Section 12.2 “Register Variables” (_Sat, _Fract, _Accum)
– Section 13.2.2 “Function Attributes” (round)
– Section 13.8 “Function Call Conventions” (_Fract, _Accum)

• Bitfield updates under Section 8.6.2 “Bit-fields in Structures”
• Added the following attributes to Section 13.2.2 “Function Attributes”: naked, keep.
• Added ISR section naming under Section 14.3 “Writing an Interrupt Service Routine” Also, Interrupt Vector

information has been removed from this manual and moved to the docs subdirectory of the compiler installation
directory, as per Section 14.4 “Specifying the Interrupt Vector”

• Optimization details have been added to Chapter 18. “Optimizations.”
• Updates to Section 19.4.3 “Compiler Output Type Macros”
• Additions concerning bit-fields in Section A.10 “Structures, Unions, Enumerations and Bit-Fields” and #pragma

config in Section A.14 “Preprocessing Directives”
• Added built-in functions below to Appendix G. “Built-in Functions.”:

– __builtin_disable_interrupts
– __builtin_enable_interrupts
– __builtin_get_isr_state
– __builtin_set_isr_state
– __builtin_section_begin
– __builtin_section_end
– __builtin_section_size

• Added Appendix B. “Embedded Compiler Compatibility Mode.”

29.11 Revision B (July 2012)
• Chapter 2. “Common C Interface.” was added.
• Figure 4-2 “Software Development Tools Data Flow” was updated.
• Table 5-16 “Linking Options” now includes the -fill option.
• Added the -pack_upper_byte qualifier information in Section 8.10.4 “__pack_
• Added DSRPAG/PSVPAG preservation bullet under Section 13.8 “Function Call Conventions”
• Fixed code syntax in Section 14.4 “Specifying the Interrupt Vector”
• Fixed Eval Edition description under Chapter 18. “Optimizations.”
• Added “volatile” to SFR registers in Appendix G. “Built-in Functions.”
• Added built-in functions __builtin_write_CRYOTP and __builtin_write_NVM_secure in Appendix G.

“Built-in Functions.”.

29.12 Revision A (April 2012)
Initial revision of the document.

Document Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 303

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 304

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Product Identification System
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.



PART NO. X /XX XXX

PatternPackageTemperature
Range

Device

 
 

[X](1)

Tape and Reel
Option

-

Device: PIC16F18313, PIC16LF18313, PIC16F18323, PIC16LF18323

Tape and Reel Option: Blank = Standard packaging (tube or tray)

T = Tape and Reel(1)

Temperature Range: I = -40°C to +85°C (Industrial)

E = -40°C to +125°C (Extended)

Package:(2) JQ = UQFN

P = PDIP

ST = TSSOP

SL = SOIC-14

SN = SOIC-8

RF = UDFN

Pattern: QTP, SQTP, Code or Special Requirements (blank otherwise)

Examples:

• PIC16LF18313- I/P Industrial temperature, PDIP package
• PIC16F18313- E/SS Extended temperature, SSOP package

Notes: 
1. Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering

purposes and is not printed on the device package. Check with your Microchip Sales Office for package
availability with the Tape and Reel option.

2. Small form-factor packaging options may be available. Please check www.microchip.com/packaging for small-
form factor package availability, or contact your local Sales Office.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 305

http://www.microchip.com/packaging

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-9636-6

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 306

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 307

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS-50002071M-page 308

http://www.microchip.com/support
http://www.microchip.com

	Notice to Development Tools Customers
	Table of Contents
	1. Preface
	1.1. GNU Free Documentation License Notice
	1.2. Conventions Used in This Guide
	1.3. Recommended Reading

	2. Compiler Overview
	2.1. Device Description
	2.2. Compiler Description and Documentation
	2.2.1. ANSI C Standard
	2.2.2. Optimization
	2.2.3. ANSI Standard Library Support
	2.2.4. Flexible Memory Models
	2.2.5. Attributes and Qualifiers
	2.2.6. Compiler Driver
	2.2.7. Documentation

	3. Compiler and Other Development Tools
	4. Common C Interface
	4.1. Background – The Desire for Portable Code
	4.1.1. The ANSI Standard
	4.1.2. The Common C Interface

	4.2. Using the CCI
	4.3. ANSI Standard Refinement
	4.3.1. Source File Encoding
	4.3.2. The Prototype for main
	4.3.3. Header File Specification
	4.3.4. Include Search Paths
	4.3.5. The Number of Significant Initial Characters in an Identifier
	4.3.6. Sizes of Types
	4.3.7. Plain char Types
	4.3.8. Signed Integer Representation
	4.3.9. Integer Conversion
	4.3.10. Bitwise Operations on Signed Values
	4.3.11. Right-shifting Signed Values
	4.3.12. Conversion of Union Member Accessed Using Member With Different Type
	4.3.13. Default Bit-field int Type
	4.3.14. Bit-fields Straddling a Storage Unit Boundary
	4.3.15. The Allocation Order of Bit-fields
	4.3.16. The NULL Macro
	4.3.17. Floating-point Sizes

	4.4. ANSI Standard Extensions
	4.4.1. Generic Header File
	4.4.2. Absolute Addressing
	4.4.3. Far Objects and Functions
	4.4.4. Near Objects
	4.4.5. Persistent Objects
	4.4.6. X and Y Data Objects
	4.4.7. Banked Data Objects
	4.4.8. Alignment of Objects
	4.4.9. EEPROM Objects
	4.4.10. Interrupt Functions
	4.4.11. Packing Objects
	4.4.12. Indicating Antiquated Objects
	4.4.13. Assigning Objects to Sections
	4.4.14. Specifying Configuration Bits
	4.4.15. Manifest Macros
	4.4.16. In-line Assembly

	4.5. Compiler Features
	4.5.1. Enabling the CCI

	5. How To's
	5.1. Installing and Activating the Compiler
	5.1.1. How Do I Install and Activate My Compiler?
	5.1.2. How Can I Tell If the Compiler has Activated Successfully?
	5.1.3. Can I Install More Than One Version of the Same Compiler?

	5.2. Invoking the Compiler
	5.2.1. How Do I Compile from Within MPLAB X IDE?
	5.2.2. How Do I Compile on the Command Line?
	5.2.3. How Can I Select Which Compiler Version to Build With?
	5.2.4. How Can I Change the Compiler Optimizations?
	5.2.5. How Do I Know Which Optimization Features I Get?
	5.2.6. How Do I Know Which Compiler Options Are Available and What They Do?
	5.2.7. How Do I Build Libraries?
	5.2.8. How Do I Know What the Build Options in MPLAB X IDE Do?
	5.2.9. What is Different About an MPLAB X IDE Debug Build?

	5.3. Writing Source Code
	5.3.1. C Language Specifics
	5.3.2. Device-Specific Features
	5.3.2.1. How Do I Port My Code To Different Device Architectures?
	5.3.2.2. How Do I Set the Configuration Bits?
	5.3.2.3. How Do I Access the User ID Locations?
	5.3.2.4. How Do I Access Special Function Registers (SFRs)?
	5.3.2.5. Are There Any SFRs Usage Considerations?
	5.3.2.6. Which Device-Specific Symbols Does the Compiler Define, and Can I Use Them?

	5.3.3. Memory Allocation
	5.3.3.1. How Do I Position Variables or Functions at an Address I Nominate?
	5.3.3.2. How Do I Place Variables in Program Memory?
	5.3.3.3. How Do I Allocate Space for a Variable But Not Initialize/Load Any Value?
	5.3.3.4. How Do I Stop the Compiler From Using Certain Memory Locations?

	5.3.4. Variables
	5.3.4.1. Why Are My Floating-Point Results Not Quite What I Am Expecting?
	5.3.4.2. How Do I Retain the Value of a Variable Even After a Soft Reset?
	5.3.4.3. How Do I Save C Variables When an ISR Is Invoked?
	5.3.4.4. How Long Can I Make My Variable and Macro Names?
	5.3.4.5. How Do I Access Values Stored in a PSV or EDS Page?
	5.3.4.6. Why Would I Need to Place Data Into Its Own Section?
	5.3.4.7. How Can I Load a Value Into Flash Memory?
	5.3.4.8. How Can I Pack Data Into Flash Memory?
	5.3.4.9. How Can I Define a Large Array?

	5.3.5. Functions
	5.3.5.1. How Do I Stop A Function From Being Removed?
	5.3.5.2. Why Should I Inline My Function?
	5.3.5.3. Why is My Function Not Inline?
	5.3.5.4. Why Should I Place a Function Into its Own Section?
	5.3.5.5. How Do I Prevent the Compiler From Saving or Restoring Any Registers?
	5.3.5.6. How Can I Tell if a Function is Being Used?
	5.3.5.7. How Can I Find Out Which Functions are Contained Inside the Compiler?
	5.3.5.8. Where are Arguments That Are Passed to Functions Located in Memory?

	5.3.6. Interrupts
	5.3.6.1. How Do I Use Interrupts in C?
	5.3.6.2. How Do I Add a Trap Interrupt Vector to a Project?
	5.3.6.3. Can/Should My Application be able to Return from a Trap?
	5.3.6.4. How Do I Share Data Between Two Interrupt Routines?
	5.3.6.5. What is the Default Interrupt, Where is it Defined, and How Do I Use It?

	5.3.7. Assembly Code
	5.3.7.1. How Should I Combine Assembly and C Code?
	5.3.7.2. What Do I Need Other Than Instructions in an Assembly Source File?
	5.3.7.3. How Do I Access C Objects from Assembly Code?
	5.3.7.4. How Can I Access SFRs From Within Assembly Code?
	5.3.7.5. When Should I Combine Assembly and C Code?
	5.3.7.6. What is the Difference Between .s and .S Files?
	5.3.7.7. How Do I Make a Function Wrapper For an Assembly Module?
	5.3.7.8. When Should Inline Assembly Be Used Instead of Assembly Modules?

	5.4. Getting My Application to Do What I Want
	5.4.1. How Do I Generate Debug Information?
	5.4.2. Why No Disassembly in the MPLAB X IDE Disassembly Window?
	5.4.3. How Do I Share Data Between Interrupt and Main-line Code?
	5.4.4. How to Protect My Code After It Is Programmed Into a Device?
	5.4.5. How Do I Redirect Standard I/O When Using Printf?
	5.4.6. How Do I Place Variables in Off-Chip Memory?
	5.4.7. How Can I Implement a Delay in My Code?
	5.4.8. How Can I Rotate a Variable?

	5.5. Understanding the Compilation Process
	5.5.1. How Does Licensing Affect Features and Optimization Levels?
	5.5.2. Why Can’t I Debug my Code after I Optimize?
	5.5.3. How Can I Make My Code Smaller?
	5.5.4. How Can I Reduce RAM Usage?
	5.5.5. How Can I Make My Code Faster?
	5.5.6. What are the Speed vs. Size Tradeoffs?
	5.5.7. How Can I Control Where the Language Tool Places Objects in Memory?
	5.5.8. How Can I Make My Interrupt Routine Faster?
	5.5.9. How Big Can C Variables Be?
	5.5.10. Which Optimizations Will Be Applied to My Code?
	5.5.11. Which Devices are Supported by the Compiler?
	5.5.12. How Do I Know What Code the Compiler Is Producing?
	5.5.13. How Can I Tell How Big a Function Is?
	5.5.14. How Do I Learn Where Variables and Functions Have Been Positioned?
	5.5.15. How Do I Properly Reserve Memory?
	5.5.16. How Do I Know How Much Memory Is Still Available?
	5.5.17. Which Libraries Get Included by Default?
	5.5.18. How Do I Create My Own Libraries?
	5.5.19. Why Do I Get Out-of-Memory Errors When I Select a Debugger?
	5.5.20. How Do I Stop My Project's Checksum From Changing?

	5.6. Fixing Code That Does Not Work
	5.6.1. How Do I Find Out What a Warning or Error Message Means?
	5.6.2. How Do I Find the Code that Caused Compiler Errors Or Warnings in My Program?
	5.6.3. How Can I Stop Warnings from Being Produced?
	5.6.4. How Do I Know If the Stack Has Overflowed?
	5.6.5. What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

	6. XC16 Toolchain and MPLAB X IDE
	6.1. MPLAB X IDE and Tools Installation
	6.2. MPLAB X IDE Setup
	6.3. MPLAB X IDE Projects
	6.4. Operation Summary
	6.5. References
	6.6. Project Setup
	6.6.1. XC16 (Global Options)
	6.6.2. xc16-as (16-bit Assembler)
	6.6.3. xc16-gcc (16-bit C Compiler)
	6.6.4. xc16-ld (16-Bit Linker)
	6.6.5. xc16-ar (16-Bit Archiver/Librarian)
	6.6.6. Options Page Features
	6.6.7. Additional Search Paths and Directories

	6.7. Project Example
	6.7.1. Run the Project Wizard
	6.7.2. Add a File to the Project
	6.7.3. Build and Run the Project
	6.7.4. Output Files
	6.7.5. Further Development

	7. Compiler Command-Line Driver
	7.1. Invoking the Compiler
	7.1.1. Drive Command-Line Format
	7.1.2. Environment Variables
	7.1.3. Input File Types

	7.2. The Compilation Sequence
	7.2.1. The Compiler Applications
	7.2.2. Single-Step Compilation
	7.2.3. Multi-Step Compilation
	7.2.4. Assembly Compilation

	7.3. Runtime Files
	7.3.1. Library Files
	7.3.2. Startup and Initialization

	7.4. Compiler Output
	7.4.1. Output Files
	7.4.2. Diagnostic Files

	7.5. Compiler Messages
	7.6. Driver Option Descriptions
	7.6.1. Options Specific to 16-Bit Devices
	7.6.2. Options for Controlling the Kind of Output
	7.6.3. Options for Controlling the C Dialect
	7.6.4. Options for Controlling Warnings and Errors
	7.6.4.1. Options to Control the Amount and Types of Warnings
	7.6.4.2. Options That Are Not Implied by -Wall
	7.6.4.3. The -W Option

	7.6.5. Options for Debugging
	7.6.6. Options for Controlling Optimization
	7.6.6.1. Options For Specific Optimization Control
	7.6.6.2. The -ffunction-sections Option
	7.6.6.3. Options that Specify Machine-Independent Flags

	7.6.7. Options for Controlling the Preprocessor
	7.6.8. Options for Assembling
	7.6.9. Options for Linking
	7.6.10. Options for Directory Search
	7.6.11. Options for Code Generation Conventions
	7.6.12. Miscellaneous Options

	7.7. MPLAB X IDE Toolchain Equivalents

	8. Device-Related Features
	8.1. Device Support
	8.2. Device Header Files
	8.2.1. Register Definition Files
	8.2.2. Device Support Information
	8.2.3. Compile Time Memory Information

	8.3. Stack
	8.4. Configuration Bit Access
	8.5. Using SFRs
	8.6. Bit-Reversed and Modulo Addressing
	8.7. Using EDS
	8.7.1. Memory Models and Address Spaces
	8.7.2. Optimizations
	8.7.3. C Library Function Extensions

	8.8. Stack Usage Guidance
	8.8.1. Usage
	8.8.2. Operation
	8.8.2.1. Recursion
	8.8.2.2. Stack Adjustments
	8.8.2.3. Interrupt Functions
	8.8.2.4. Unconnected Executable Code

	8.8.3. Using the Guidance

	9. Differences Between MPLAB XC16 and ANSI C
	9.1. Divergence from the ANSI C Standard
	9.2. Extensions to the ANSI C Standard
	9.3. Implementation-Defined Behavior

	10. Supported Data Types and Variables
	10.1. Identifiers
	10.2. Integer Data Types
	10.2.1. Double-Word Integers
	10.2.2. char Types

	10.3. Floating-Point Data Types
	10.4. Fixed-Point Data Types
	10.5. Structures and Unions
	10.5.1. Structure and Union Qualifiers
	10.5.2. Bitfields in Structures

	10.6. Pointer Types
	10.6.1. Combining Type Qualifiers and Pointers
	10.6.2. Data Pointers
	10.6.3. Function Pointers
	10.6.4. Special Pointer Targets

	10.7. Literal Constant Types and Formats
	10.8. Standard Type Qualifiers
	10.8.1. Const Type Qualifier
	10.8.2. Volatile Type Qualifier

	10.9. Compiler-Specific Type Qualifiers
	10.9.1. __psv__ Type Qualifier
	10.9.2. __prog__ Type Qualifier
	10.9.3. __eds__ Type Qualifier
	10.9.4. __pack_upper_byte Type Qualifier
	10.9.5. __pmp__ Type Qualifier
	10.9.6. __external__ Type Qualifier

	10.10. Variable Attributes

	11. Fixed-Point Arithmetic Support
	11.1. Enabling Fixed-Point Arithmetic Support
	11.2. Data Types
	11.3. Rounding
	11.4. Division By Zero
	11.5. External Definitions
	11.6. Mixing C and Assembly Language Code

	12. Memory Allocation and Access
	12.1. Address Spaces
	12.2. Variables In Data Space Memory
	12.2.1. Auto and Non-Auto Variables vs. Local and Global Variables
	12.2.2. Non-Auto Variable Allocation and Access
	12.2.2.1. Default Allocation of Non-auto Variables
	12.2.2.2. Static Variables
	12.2.2.3. Non-Auto Variable Size Limits
	12.2.2.4. Changing Non-Auto Variable Allocation
	12.2.2.5. Data Memory Allocation Macros

	12.2.3. Auto Variable Allocation and Access
	12.2.3.1. Software Stack
	12.2.3.2. The C Stack Usage
	12.2.3.3. Auto Variable Size Limits

	12.2.4. Changing Auto Variable Allocation

	12.3. Variables in Program Space
	12.3.1. Allocation and Access of Program Memory Objects
	12.3.1.1. String and Const Objects
	12.3.1.2. Const-qualified Variables in Secure Flash
	12.3.1.3. String Literals as Arguments

	12.3.2. Access of Objects in Program Memory
	12.3.2.1. Managed PSV Access
	12.3.2.2. Object Compatibility Model
	12.3.2.3. ISR Considerations

	12.3.3. Size Limitations of Program Memory Variables
	12.3.4. Changing Program Memory Variable Allocation

	12.4. Parallel Master Port Access
	12.4.1. Initialize PMP
	12.4.2. Declare a New Memory Space
	12.4.3. Define Variables within PMP Space

	12.5. External Memory Access
	12.5.1. Declare a New Memory Space
	12.5.2. Define Variables Within an External Space
	12.5.3. Define How to Access Memory Spaces
	12.5.4. An External Example

	12.6. Extended Data Space Access
	12.7. Dataflash Memory Access
	12.8. Dual Partition Memory Access
	12.9. Packing Data Stored in Flash
	12.9.1. Packed Example
	12.9.2. Usage Considerations
	12.9.3. Addressing Information

	12.10. Allocation of Variables to Registers
	12.11. Variables in EEPROM Data Space (Device Dependent)
	12.11.1. Accessing EEData via User Managed PSV
	12.11.2. Accessing EEData Using TBLRDx Instructions
	12.11.3. Accessing EEData Using Managed Access
	12.11.4. Additional Sources of Information

	12.12. Dynamic Memory Allocation
	12.13. Co-Resident Applications
	12.14. Memory Models
	12.14.1. Near or Far Data
	12.14.2. Near or Far Code
	12.14.3. Default Memory Models

	13. Operators and Statements
	13.1. Built-In Functions
	13.2. Integral Promotion

	14. Register Usage
	14.1. Register Variables
	14.2. Changing Register Contents

	15. Functions
	15.1. Writing Functions
	15.1.1. Function Specifiers
	15.1.2. Function Attributes
	15.1.2.1. address (addr)
	15.1.2.2. alias ("target")
	15.1.2.3. auto_psv, no_auto_psv
	15.1.2.4. boot
	15.1.2.5. const
	15.1.2.6. context
	15.1.2.7. deprecated
	15.1.2.8. far
	15.1.2.9. format (archetype, string-index, first-to-check)
	15.1.2.10. format_arg (string-index)
	15.1.2.11. keep
	15.1.2.12. naked
	15.1.2.13. near
	15.1.2.14. noload
	15.1.2.15. noreturn
	15.1.2.16. optimize
	15.1.2.17. priority(n)
	15.1.2.18. round(mode)
	15.1.2.19. save(list)
	15.1.2.20. section ("section-name")
	15.1.2.21. secure
	15.1.2.22. shadow
	15.1.2.23. shared
	15.1.2.24. unsupported("message")
	15.1.2.25. unused
	15.1.2.26. user_init
	15.1.2.27. weak

	15.2. Function Size Limits
	15.3. Allocation of Function Code
	15.4. Changing the Default Function Allocation
	15.5. Inline Functions
	15.6. Memory Models
	15.7. Function Call Conventions
	15.7.1. Function Parameters
	15.7.2. Return Value
	15.7.3. Preserving Registers Across Function Calls

	16. Interrupts
	16.1. Interrupt Operation
	16.2. Writing an Interrupt Service Routine
	16.2.1. Guidelines for Writing ISRs
	16.2.2. Syntax for Writing ISRs
	16.2.3. Coding ISRs
	16.2.4. Using Macros to Declare Simple ISRs

	16.3. Specifying the Interrupt Vector
	16.3.1. Interrupt Vector Usage
	16.3.2. Interrupt Vector Tables

	16.4. Interrupt Service Routine Context Saving
	16.4.1. Assembly and ISRs
	16.4.2. context Attribute

	16.5. Nesting Interrupts
	16.6. Enabling/Disabling Interrupts
	16.7. ISR Considerations
	16.7.1. Sharing Memory with Mainline Code
	16.7.2. PSV Usage with Interrupt Service Routines
	16.7.3. Latency

	17. Main, Runtime Startup and Reset
	17.1. The main Function
	17.2. Runtime Startup and Initialization

	18. Mixing C and Assembly Code
	18.1. Mixing Assembly Language and C Variables and Functions
	18.2. Using Inline Assembly Language
	18.3. Predefined Assembly Macros

	19. Library Routines
	20. Optimizations
	20.1. Optimization Feature Summary
	20.2. How to Enable Optimization
	20.3. Using Optimizations
	20.3.1. Coding for an Optimizing Compiler
	20.3.2. Help! Optimizing Broke my Code!
	20.3.2.1. Sharing Data Between Different Threads of Execution
	20.3.2.2. Intermixing C and Assembly

	20.3.3. Debugging Strategies for Optimized Code

	21. Preprocessing
	21.1. C Language Comments
	21.2. Preprocessing Directives
	21.3. Predefined Macro Names
	21.3.1. Compiler Version Macro
	21.3.2. Compiler Settings Macro
	21.3.3. Compiler Output Type Macros
	21.3.4. Device Name and Family (Architecture) Macros
	21.3.5. Device Features Macros
	21.3.6. Other Macros

	22. Linking Programs
	22.1. Default Memory Spaces
	22.2. Replacing Library Symbols
	22.3. Linker-Defined Symbols
	22.4. Default Linker Script

	23. Implementation-Defined Behavior
	23.1. Translation
	23.2. Environment
	23.3. Identifiers
	23.4. Characters
	23.5. Integers
	23.6. Floating Point
	23.7. Arrays and Pointers
	23.8. Registers
	23.9. Structures, Unions, Enumerations and Bit-Fields
	23.10. Qualifiers
	23.11. Declarators
	23.12. Statements
	23.13. Preprocessing Directives
	23.14. Library Functions
	23.15. Signals
	23.16. Streams and Files
	23.17. tmpfile
	23.18. errno
	23.19. Memory
	23.20. abort
	23.21. exit
	23.22. getenv
	23.23. system
	23.24. strerror

	24. Embedded Compiler Compatibility Mode
	24.1. Compiling in Compatibility Mode
	24.2. Syntax Compatibility
	24.3. Data Type
	24.4. Operator
	24.5. Extended Keywords
	24.6. Intrinsic Functions
	24.7. Pragmas

	25. Diagnostics
	25.1. Errors
	25.2. Warnings

	26. GNU Free Documentation License
	27. Deprecated Features
	27.1. Predefined Constants
	27.2. Variables in Specified Registers
	27.2.1. Defining Global Register Variables
	27.2.2. Specifying Registers for Local Variables

	27.3. Changing Non-Auto Variable Allocation
	27.4. Configuration Settings Using Macros

	28. Built-in Functions
	28.1. Built-In Functions vs. Inline Assembly
	28.2. Built-In Function Descriptions
	28.2.1. __builtin_ACCL, __builtin_ACCH, __builtin_ACCU
	28.2.2. __builtin_add
	28.2.3. __builtin_addab
	28.2.4. __builtin_addr_low, __builtin_addr_high, __builtin_addr
	28.2.5. __builtin_btg
	28.2.6. __builtin_clr
	28.2.7. __builtin_clr_prefetch
	28.2.8. __builtin_clrwdt
	28.2.9. __builtin_dataflashoffset
	28.2.10. __builtin_disable_interrupts
	28.2.11. __builtin_disi
	28.2.12. __builtin_divf
	28.2.13. __builtin_divmodsd
	28.2.14. __builtin_divmodud
	28.2.15. __builtin_divsd
	28.2.16. __builtin_divud
	28.2.17. __builtin_dmaoffset
	28.2.18. __builtin_dmapage
	28.2.19. __builtin_ed
	28.2.20. __builtin_edac
	28.2.21. __builtin_edsoffset
	28.2.22. __builtin_edspage
	28.2.23. __builtin_enable_interrupts
	28.2.24. __builtin_fbcl
	28.2.25. __builtin_flim
	28.2.26. __builtin_flim_excess
	28.2.27. __builtin_flimv_excess
	28.2.28. __builtin_get_isr_state
	28.2.29. __builtin_lac
	28.2.30. __builtin_lacd
	28.2.31. __builtin_mac
	28.2.32. __builtin_modsd
	28.2.33. __builtin_modud
	28.2.34. __builtin_movsac
	28.2.35. __builtin_mpy
	28.2.36. __builtin_mpyn
	28.2.37. __builtin_msc
	28.2.38. __builtin_mulss
	28.2.39. __builtin_mulsu
	28.2.40. __builtin_mulus
	28.2.41. __builtin_muluu
	28.2.42. __builtin_nop
	28.2.43. __builtin_popcount
	28.2.44. __builtin_popcountl
	28.2.45. __builtin_psvoffset
	28.2.46. __builtin_psvpage
	28.2.47. __builtin_pwrsav
	28.2.48. __builtin_readsfr
	28.2.49. __builtin_return_address
	28.2.50. __builtin_sac
	28.2.51. __builtin_sacd
	28.2.52. __builtin_sacr
	28.2.53. __builtin_section_begin, __builtin_section_end
	28.2.54. __builtin_section_size
	28.2.55. __builtin_set_isr_state
	28.2.56. __builtin_sftac
	28.2.57. __builtin_software_breakpoint
	28.2.58. __builtin_subab
	28.2.59. __builtin_swap
	28.2.60. __builtin_swap_byte
	28.2.61. __builtin_tbladdress
	28.2.62. __builtin_tbloffset
	28.2.63. __builtin_tblpage
	28.2.64. __builtin_tblrdh
	28.2.65. __builtin_tblrdl
	28.2.66. __builtin_tblwth
	28.2.67. __builtin_tblwtl
	28.2.68. __builtin_write_CRYOTP
	28.2.69. __builtin_write_DISICNT
	28.2.70. __builtin_write_NVM
	28.2.71. __builtin_write_NVM_secure
	28.2.72. __builtin_write_OSCCONH
	28.2.73. __builtin_write_OSCCONL
	28.2.74. __builtin_write_PWMSFR
	28.2.75. __builtin_write_RPCON
	28.2.76. __builtin_write_RTCWEN
	28.2.77. __builtin_write_RTCC_WRLOCK

	29. Document Revision History
	29.1. Revision M (January 2022)
	29.2. Revision L (February 2021)
	29.3. Revision K (June 2020)
	29.4. Revision J (December 2019)
	29.5. Revision H (November 2018)
	29.6. Revision G (February 2018)
	29.7. Revision F (July 2016)
	29.8. Revision E (December 2014)
	29.9. Revision D (August 2014)
	29.10. Revision C (September 2013)
	29.11. Revision B (July 2012)
	29.12. Revision A (April 2012)

	The Microchip Website
	Product Change Notification Service
	Customer Support
	Product Identification System
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

